Skip to main content

2015 | OriginalPaper | Buchkapitel

2. Bench Scale Calorimeter

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To record the rate q of heat release by a chemical reaction (thermal reaction power) under strictly isothermal conditions in the measuring kettle of a calorimeter, the apparatus must be able

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Primarily a lattice stirrer is used.
 
2
This relation stands to reason, because it is evident that
1.
To maintain \( \Delta {T}_2=\mathrm{const} \), the partial changes in the total change in the heating power in the measuring kettle following the start of the reaction from their values prior to the start of reaction δp 2 must be
  • Opposite and equal to the thermal power of reaction q
  • Opposite and equal to the change in stirring power δ St2
  • Equal to the change in heat flow out of the measuring kettle by a change in heat transfer following the start of reaction \( \updelta {\left(k \cdot F\right)}_2 \cdot \Delta {T}_2 \)
    $$ \updelta {p}_2=\updelta {\left(k \cdot F\right)}_2 \cdot \Delta {T}_2-{\delta}_{\mathrm{S}2}-q=\left[\updelta {\left(k \cdot F\right)}_2 \cdot \Delta {T}_2-{\delta}_{\mathrm{S}\mathrm{t}2}\right]-q $$
 
2.
To maintain \( \Delta {T}_1=\mathrm{const} \), the change in electric heating power of the intermediate thermostat δp 1 must be
  • Opposite and equal to the change in heat flow \( \updelta {(kF)}_2 \cdot \Delta {T}_2 \) from the measuring kettle following the start of the reaction from the value prior to the start of
    $$ \updelta {\left(k \cdot F\right)}_2 \cdot \Delta {T}_{20}=\hbox{--} \updelta {p}_1 $$
 
3.
The change in stirring power δ R2 corresponds to the change in the total motor power δ M2 when the lost power remains constant.
Hence, \( \delta {p}_2=\hbox{--} \left(\delta {p}_1+{\delta}_{M2}\right)\hbox{--} q=\delta {p}_B\hbox{--} q \) (Fig. 2.4).
 
 
3
Barlow wheel [2]
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-319-12532-9_2/MediaObjects/327926_1_En_2_Figa_HTML.gif
The Barlow wheel, from 1822, is considered to be the historic forerunner of the DC disk-armature motor. It consists of a pivoted copper disk S in a vertically oriented magnetic field of a strong permanent magnet M. The conductive connection from the copper disk to the conductive wire takes place via a mercury batch R.
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-319-12532-9_2/MediaObjects/327926_1_En_2_Figb_HTML.gif
The essential constituents of a modern DC disk-armature motor (Brown, Boveri & Cie. AG, Mannheim) connected to a tachometer. Magnetic return path via a ferriferous motor jacket.
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-319-12532-9_2/MediaObjects/327926_1_En_2_Figc_HTML.gif
Arrangement of conductive wires of rotor disk [7]
 
4
d Torque generated mechanical torque per unit of the electric current strength I.
 
5
k Motor generated electric voltage of the DC disc armature motor (running without load) at one revolution N in unit of time.
 
6
k Tacho generated electric voltage of the DC disk armature tachogenerator (speedometer) at one revolution N in unit of time.
 
7
In fact, the preceding baseline must be completed by a term that takes into account a small heat exchange with the laboratory via the insulated inlet pipes and the cover of the measuring kettle. The heat exchange varies with a temperature programme change T 2. This term usually varies approximately linearly based on experimentation. Hence, it is sufficiently integrated in the linearly approximated evaluation of p B(t).
 
8
Only when p(t > t E) agrees with \( p\left(t<0\right)={p}_0 \) the reaction is really finished at the point in time t E.
 
9
Existing when the temperature T 2 does not change too quickly.
 
10
Intermediate- and socle thermostat consist mainly of welded spiral tubes with turbulent flow, the socle thermostat with an utmost quick throughput of a liquid with the constant entry temperature, e.g. from a public supply (Fig. 2.11).
 
11
The usual temperature rise produces dT 2/dt = dT 1/dt ≅ dT m/dt as well as T 1 = T 2 = T m + ∂T, with ∂T ≅ const. A very quick temperature rise causes dT 2/dt = dT 1/dt ≠ dT m/dt as well as T 1 = T 2 = T m + ∂T, with ∂T ≠ const.
 
12
q Mi represents the sum of the caloric power of the physical and physicochemical processes during and occasionally after dosing or injection (Chap. 6). The heat of mixture Q Mi is liberated usually instantly during the injection of mixture to start the reaction, with the result that the pre-starting temperature \( {T}_2\left(t<0\right) \) jumps abruptly at \( {t}_0=0 \) to \( {T}_2\left(t<0\right)+\updelta {T}_0={T}_2\left(t=0\right) \) (Fig. 2.30). C 2 · δT 0 corresponds to the liberated heat \( {Q}_{\mathrm{Mi}}={\displaystyle \int {q}_{\mathrm{Mi}} \cdot \mathrm{d}t} \). When the mixing process does not occur instantly, a kinetic analysis can only be approximated because (q + q Mi) is not easily analysable, i.e. to split into q and q Mi. The course of the rate of heat release q Mi should be determined before the calorikinetic measurements are made, or Q Mi should be compensated as far as possible by the use of an appropriately warmed-up injection mixture to start the reaction kinetic measurements.
 
13
The plot of ln T 2 versus time gives a curve which turns into a straight line. From the transition t E can be deduced, see e.g. Eqs. (2.25) and (2.26).
For measurements prior to the start of the reaction the measuring kettle must be filled with a solution of all components without the reactant for the start of the reaction, and for measurements after the reaction with the completely reacted mixture, with it filled up each time to the volume equal to that after the start of the reaction.
 
15
Using a conventional stirrer, the flow takes place continuously but weakly pulsating as a result of the following causes:
(a)
A low-pressure supply of inert gas on the filling of kettle
 
(b)
A lengthened outflow pipe sticking through the cover of the measuring kettle by approximately 1 cm.
 
For a flooded flow measuring kettle a circular pendulum mixer is recommended for use instead of a conventional stirrer (Sect. 2.5, Fig. 2.39).
 
16
If the reactant solutions being dosed are not brought to the temperature of the measuring kettle, then q Mi consists of the rates of heat release due to both physical dosing (physical heat \( g \cdot {c}_{\mathrm{p}} \cdot \left({T}_{\mathrm{Laboratory}}-{T}_2\right) \) and physicochemical mixing (physicochemical heat).
 
17
During quasi-continual equilibrium, the absolute amounts of the caloric evaporation power q E in the measuring kettle (temperature T 2) corresponds to the thermal condensation power q C in the condenser kettle (temperature T 3), that is, the sum of the powers cooling the vapour from temperature T 2 down to T 3 and subsequent condensation with temperature T 3.
 
18
The prerequisite of such a measuring mode is the initiation of a change in temperature.
 
19
See Sect. 4.​1.
 
20
This is illustrated, without restriction of the universal validity, by a monomolecular reaction of order 1, see 4.2.1.1.1.3
  • Discontinuous reaction in tank reactor:
    $$ {c}_{\mathrm{R}\mathrm{eactor}}={c}_{\mathrm{R}0} \cdot \mathrm{E}\mathrm{X}\mathrm{P}\left(-kt\right),\kern1em {c}_{\mathrm{Mkettle}}={c}_{\mathrm{R}0} \cdot \mathrm{E}\mathrm{X}\mathrm{P}\left(-kt\right) $$
    $$ {c}_{\mathrm{R}}={c}_{\mathrm{Mk}}. $$
  • Semi-continuous reaction in tank reactor:
    when c R0 = 0 it follows that \( {c}_{\mathrm{R}}=g/M/V/k \cdot \left[1-\mathrm{E}\mathrm{X}\mathrm{P}\left(-kt\right)\right] \),
    $$ {c}_{\mathrm{Mk}}=g/M/V/k \cdot \left[1/\left(1+k\tau \right)-\mathrm{E}\mathrm{X}\mathrm{P}\left(-kt\right)+{\left\{k\tau /\left(1+k\tau \right)\right\}}{\cdot}\mathrm{E}\mathrm{X}\mathrm{P}\left(-\left(1/\tau +k\right)\right)\right]; $$
    i.e. when  < 0.01, it follows with an error of <1 % that
    $$ {c}_{\mathrm{R}}={c}_{\mathrm{Mk}}. $$
  • Continuous reaction in tank reactor:
    $$ {c}_{\mathrm{R}}={c}_{\mathrm{R}\mathrm{stat}},\kern1em {c}_{\mathrm{Mk}}={c}_{\mathrm{R}\mathrm{stat}}/\left(1+k\tau \right); $$
    i.e. when  < 0.01, it follows with an error of <1 % that
    $$ {\mathrm{c}}_{\mathrm{R}}={\mathrm{c}}_{\mathrm{Mk}}. $$
 
21
C Mt is relatively independent of temperature, more or less. C F, however, varies with changes in temperature. However, because of the generally moderate temperature fluctuations in the tank reactor, its influence can by first approximation also be neglected.
 
22
The batch of the tank reactor is as follows:
  • Substance 1 with mass m 1, density ρ 1, specific heat c p1
  • Substance 2 with mass m 2, density ρ 2, specific heat c p2
  • Substance n with mass m n , density ρ n , specific heat c pn .
The dosage with constant mass rates g i is as follows:
  • Substance 3 with rate g 3, density ρ 3, specific heat c p3
  • Substance m with rate g m , density ρ m , specific heat c pm .
The weighted average method yields the following results (neglecting the effect of changes in individual substances due to the reaction):
Average specific heat c p(t) of reaction mass:
$$ {c}_{\mathrm{p}}(t)=\frac{m_1 \cdot {c}_{\mathrm{p}1}+{m}_2 \cdot {c}_{\mathrm{p}2}+{m}_n \cdot {c}_{\mathrm{p}n}+\dots + {g}_3 \cdot t \cdot {c}_{\mathrm{p}3}+\dots + {g}_m \cdot t \cdot {c}_{\mathrm{p}m}+\dots }{m_1+{m}_2+{m}_n+\dots +{g}_3 \cdot t+\dots +{g}_m \cdot t+\dots } $$
Average density ρ(t) of reaction mass:
$$ \rho {(t)}^{-1}=\frac{m_1/{\rho}_1+{m}_2/{\rho}_2+{m}_n/{\rho}_n+\dots {g}_3 \cdot t/{\rho}_3+\dots +{g}_m \cdot t/{\rho}_m+\dots }{m_1/{m}_2+{m}_n+\dots +{g}_3 \cdot t+\dots +{g}_m \cdot t+\dots } $$
$$ {C}_{\mathrm{F}}=\rho (t) \cdot \mathrm{V} \cdot {c}_{\mathrm{p}}(t)={C}_{\mathrm{p}}(t) \cdot G(t). $$
 
Literatur
2.
Zurück zum Zitat Bergmann,L.;Schaefer,Cl. Lehrbuch der Experimentalphysik, Band II Elektrizitätslehre, Verlag Walter de Gruyter & Co., Berlin (1958) Bergmann,L.;Schaefer,Cl. Lehrbuch der Experimentalphysik, Band II Elektrizitätslehre, Verlag Walter de Gruyter & Co., Berlin (1958)
6.
Zurück zum Zitat Brammer,K.; Siffling,G. Kalman-Bucy-Filter, Deterministische Beobachtung und stochastische Filterung, R.Oldenbourg Verlag München Wien (1975) Brammer,K.; Siffling,G. Kalman-Bucy-Filter, Deterministische Beobachtung und stochastische Filterung, R.Oldenbourg Verlag München Wien (1975)
7.
Zurück zum Zitat Brown, Boveri & CIE. Informationsbroschüre (1972) Brown, Boveri & CIE. Informationsbroschüre (1972)
24.
Zurück zum Zitat Litz,W. German Offenlegungsschrift 3049105 (1980) Litz,W. German Offenlegungsschrift 3049105 (1980)
40.
Zurück zum Zitat Regenass,W. German Offenlegungsschrift 2332135 (1973) Regenass,W. German Offenlegungsschrift 2332135 (1973)
41.
Zurück zum Zitat Schmidt,C.-U.;Reichert,K.-H. Chem.-Ing.-Techn., 59 (1987) 739-742 Schmidt,C.-U.;Reichert,K.-H. Chem.-Ing.-Techn., 59 (1987) 739-742
43.
Zurück zum Zitat Schuler,H.; Schmidt,C.-U. Chem.Ing.-Techn. 63 (1991) 183-189 Schuler,H.; Schmidt,C.-U. Chem.Ing.-Techn. 63 (1991) 183-189
46.
Zurück zum Zitat Tietze,A.;Lüdke,I.;Reichert,K.-H. Chemical Engineering Science,51 (1996) 3131 Tietze,A.;Lüdke,I.;Reichert,K.-H. Chemical Engineering Science,51 (1996) 3131
49.
Zurück zum Zitat Walisch,W.; Becker,F. Z. physik. Chemie, 36 (1963) 97 Walisch,W.; Becker,F. Z. physik. Chemie, 36 (1963) 97
54.
Zurück zum Zitat Zogg,A.;Fischer,U.; Hungerbühler.K. Ind. Eng. Chem. Res, 42 (2003),667-776 Zogg,A.;Fischer,U.; Hungerbühler.K. Ind. Eng. Chem. Res, 42 (2003),667-776
Metadaten
Titel
Bench Scale Calorimeter
verfasst von
Wilfried Litz
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-12532-9_2