Skip to main content

2024 | OriginalPaper | Buchkapitel

BGKnow-Medical Chatbot: A Hybrid Approach Based on Knowledge Graph and GPT-2

verfasst von : Disha Sunil Nikam, D. Nisha Murthy, Sreeramya Dharani Pragada, H. R. Mamatha

Erschienen in: Advances in Data-Driven Computing and Intelligent Systems

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Accurate and timely diagnosis is critical in ensuring patients receive care and treatment for their medical conditions. Traditional symptom checkers often lack accuracy and efficiency in diagnosing diseases, as they typically rely on preprogrammed decision trees or rule-based algorithms that may not account for the complexity and variability of symptoms. By using natural language processing (NLP) and machine learning techniques, such as knowledge graphs and Bio-Bidirectional Encoder Representations From Transformers (BioBERT), chatbots can provide a more accurate and personalized approach to disease diagnosis. This paper introduces a hybrid chatbot framework called “BGKnow.” BGKnow represents the combination of a knowledge graph and Generative Pre-trained Transformer 2 (GPT-2) model that uses BioBERT embeddings for effective diagnosis based on symptoms entered by users. The proposed system shows promising potential for assisting healthcare professionals in accurately and efficiently addressing medical inquiries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alec R, Wu J, Rewon C, David L, Dario A, Ilya S (2019) Language models are unsupervised multitask learners. OpenAI Blog 1(8):9 Alec R, Wu J, Rewon C, David L, Dario A, Ilya S (2019) Language models are unsupervised multitask learners. OpenAI Blog 1(8):9
2.
Zurück zum Zitat Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, Kang J (2020) BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36(4):1234–1240CrossRef Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, Kang J (2020) BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36(4):1234–1240CrossRef
3.
Zurück zum Zitat Joseph W (1966) ELIZA-a computer program for the study of natural language communication between man and machine. Commun ACM 9(1):36–45CrossRef Joseph W (1966) ELIZA-a computer program for the study of natural language communication between man and machine. Commun ACM 9(1):36–45CrossRef
4.
Zurück zum Zitat Colby KM, Weber S, Hilf FD (1971) Artificial paranoia. Artif Intell 2(1):1–25CrossRef Colby KM, Weber S, Hilf FD (1971) Artificial paranoia. Artif Intell 2(1):1–25CrossRef
6.
Zurück zum Zitat Rashmi D, Deshpande Neeta A (2018) A medical chatbot. Int J Comput Trends Technol (IJCTT) 60(1):41–45CrossRef Rashmi D, Deshpande Neeta A (2018) A medical chatbot. Int J Comput Trends Technol (IJCTT) 60(1):41–45CrossRef
7.
Zurück zum Zitat Athota L, Shukla VK, Pandey N, Rana A (2020) Chatbot for healthcare system using artificial intelligence. In: 2020 8th international conference on reliability, infocom technologies and optimization (trends and future directions) (ICRITO), pp 619–622. IEEE Athota L, Shukla VK, Pandey N, Rana A (2020) Chatbot for healthcare system using artificial intelligence. In: 2020 8th international conference on reliability, infocom technologies and optimization (trends and future directions) (ICRITO), pp 619–622. IEEE
8.
Zurück zum Zitat Mahajan P, Wankhade R, Jawade A, Dange P, Bhoge A (2020) Healthcare chatbot using natural language processing. In: 8th international conference on reliability, infocom technologies and optimization (trends and future directions) Mahajan P, Wankhade R, Jawade A, Dange P, Bhoge A (2020) Healthcare chatbot using natural language processing. In: 8th international conference on reliability, infocom technologies and optimization (trends and future directions)
9.
Zurück zum Zitat Divya S, Indumathi V, Ishwarya S, Priyasankari M, Kalpana Devi S (2018) A self-diagnosis medical chatbot using artificial intelligence. J Web Dev Web Des 3(1):1–7 Divya S, Indumathi V, Ishwarya S, Priyasankari M, Kalpana Devi S (2018) A self-diagnosis medical chatbot using artificial intelligence. J Web Dev Web Des 3(1):1–7
10.
Zurück zum Zitat Jurgita K-D (2020) A domain-specific generative chatbot trained from little data. Appl Sci 10(7):2221CrossRef Jurgita K-D (2020) A domain-specific generative chatbot trained from little data. Appl Sci 10(7):2221CrossRef
11.
Zurück zum Zitat Mohammed A, Ammar M, Hefny Hesham A (2023) Deep learning for Arabic healthcare: MedicalBot. Soc Netw Anal Min 13(1):71CrossRef Mohammed A, Ammar M, Hefny Hesham A (2023) Deep learning for Arabic healthcare: MedicalBot. Soc Netw Anal Min 13(1):71CrossRef
12.
Zurück zum Zitat Bao Q, Ni L, Liu J (2020) HHH: an online medical chatbot system based on knowledge graph and hierarchical bi-directional attention. In: Proceedings of the Australasian computer science week multiconference, pp 1–10 Bao Q, Ni L, Liu J (2020) HHH: an online medical chatbot system based on knowledge graph and hierarchical bi-directional attention. In: Proceedings of the Australasian computer science week multiconference, pp 1–10
13.
Zurück zum Zitat Radford A, Narasimhan K, Salimans T, Sutskever I (2018) Improving language understanding by generative pre-training Radford A, Narasimhan K, Salimans T, Sutskever I (2018) Improving language understanding by generative pre-training
14.
Zurück zum Zitat Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, p 30 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, p 30
15.
Zurück zum Zitat Kalla D, Samiuddin V (2020) Chatbot for medical treatment using NLTK Lib. IOSR J Comput Eng 22 Kalla D, Samiuddin V (2020) Chatbot for medical treatment using NLTK Lib. IOSR J Comput Eng 22
16.
Zurück zum Zitat Mittal H, Srivastava V, Yadav SK, Prajapati SK (2021) Healthcare chatbot system using artificial intelligence. No. 6086. EasyChair Mittal H, Srivastava V, Yadav SK, Prajapati SK (2021) Healthcare chatbot system using artificial intelligence. No. 6086. EasyChair
Metadaten
Titel
BGKnow-Medical Chatbot: A Hybrid Approach Based on Knowledge Graph and GPT-2
verfasst von
Disha Sunil Nikam
D. Nisha Murthy
Sreeramya Dharani Pragada
H. R. Mamatha
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9521-9_30