Skip to main content
Erschienen in: Cognitive Computation 5/2019

17.07.2019

Bidirectional Cognitive Computing Model for Uncertain Concepts

verfasst von: Changlin Xu, Guoyin Wang

Erschienen in: Cognitive Computation | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Most intelligent computing models are inspired by various human/natural/social intelligence mechanisms during the past 60 years. Achievements of cognitive science could give much inspiration to artificial intelligence. Cognitive computing is one of the core fields of artificial intelligence. It aims to develop a coherent, unified, universal mechanism inspired by human mind’s capabilities. It is one of the most critical tasks for artificial intelligence researchers to develop advanced cognitive computing models. The human cognition has been researched in many fields. Some uncertain theories are briefly analyzed from the perspective of cognition based on concepts. In classical intelligent information systems, original data are collected from environment at first; usually, useful information is extracted through analyzing the input data then, it is used to solve some problem at last. There is a common characteristic between traditional machine learning, data mining, and knowledge discovery models. That is, knowledge is always transformation from data. From the point of view of granular computing, it is a unidirectional transformation from finer granularity to coarser granularity. Inspired by human’s granular thinking and the cognition law of “global precedence”, the human cognition process is from coarser granularity to finer granularity. Generally speaking, concepts (information and knowledge) in a higher granularity layer would be more uncertain than the ones in a lower granularity layer. A concept in a higher granularity layer would be the abstraction of some objects (data or concepts in a lower granularity layer). Obviously, there is a contradiction between the unidirectional transformation mechanism “from finer granularity to coarser granularity” of traditional intelligent information systems with the global precedence law of human cognition. That is, the human cognition are different the computer cognition for uncertain concept. The human cognition for knowledge (or concept) is based on the intension of concept, while the computing of computer (or machine) is based on the extension. In order to integrate the human cognition of “from coarser to finer” and the computer’s information processing of “from finer to coarser”, a new cognitive computing model, bidirectional cognitive computing model between the intension and extension of uncertain concepts, is proposed. The purpose of the paper is to establish the relationship between the human brain computing mode (computing based on intension of concept) and the machine computing mode (computing based on extension of concept) through the way of computation. The cloud model theory as a new cognition model for uncertainty proposed by Li in 1995 based on probability theory and fuzzy set theory, which provides a way to realize the bidirectional cognitive transformation between qualitative concept and quantitative data—forward cloud transformation and backward cloud transformation. Inspired by the cloud model theory, the realization of the bidirectional cognitive computing process in the proposed method is that the forward cloud transformation algorithm can be used to realize the cognitive transformation from intension to extension of concept, while the backward cloud transformation algorithm is to realize the cognitive transformation from extension to intension. In other words, the forward cloud transformation is a converter “from coarser to finer”, and the backward cloud transformation is a converter “from finer to coarser”. Taking some uncertain concepts as cognitive unit of simulation, several simulation experiments of the bidirectional cognition computing process are implemented in order to simulate the human cognitive process, such as cognition computing process for an uncertain concept with fixed samples, cognition computing process of dynamically giving examples, and cognition computing process of passing a concept among people. These experiment results show the validity and efficiency of the bidirectional cognitive computing model for cognition study.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Michael O’N. Artificial intelligence and cognitive science. Berlin: Springer; 2002. Michael O’N. Artificial intelligence and cognitive science. Berlin: Springer; 2002.
2.
Zurück zum Zitat Howard N, Hussain A. The fundamental code unit of the brain: towards a new model for cognitive geometry. Cogn Comput 2018;10(3):426–36. Howard N, Hussain A. The fundamental code unit of the brain: towards a new model for cognitive geometry. Cogn Comput 2018;10(3):426–36.
4.
Zurück zum Zitat Li DY, Du Y. Artificial intelligence with uncertainty, 2nd ed. London: Chapman and Hall/CRC; 2017. Li DY, Du Y. Artificial intelligence with uncertainty, 2nd ed. London: Chapman and Hall/CRC; 2017.
5.
Zurück zum Zitat Wang GY, Xu CL, et al. Cloud model—a bidirectional cognition model between concept’s extension and intension. In: Ell Hassanien A, editor. AMLTA 2012, CCIS 322. Berlin: Springer; 2012, pp. 391–400. Wang GY, Xu CL, et al. Cloud model—a bidirectional cognition model between concept’s extension and intension. In: Ell Hassanien A, editor. AMLTA 2012, CCIS 322. Berlin: Springer; 2012, pp. 391–400.
6.
Zurück zum Zitat Kanal LN, Lemmer JF. Uncertainty in artificial intelligence. New York: Elsevier Science publishing; 2008. Kanal LN, Lemmer JF. Uncertainty in artificial intelligence. New York: Elsevier Science publishing; 2008.
7.
Zurück zum Zitat Wang GY. Rough set based uncertainty knowledge expressing and processing. In: RSFDGrC 2011. Moscow; 2011. p. 11–8. Wang GY. Rough set based uncertainty knowledge expressing and processing. In: RSFDGrC 2011. Moscow; 2011. p. 11–8.
8.
Zurück zum Zitat Wallerstein I. The uncertainties of knowledge. Philadelphia: Temple University Press; 2004. Wallerstein I. The uncertainties of knowledge. Philadelphia: Temple University Press; 2004.
9.
Zurück zum Zitat Wang ZK. Probability theory and its applications. Beijing: Beijing Normal University Press; 1995. Wang ZK. Probability theory and its applications. Beijing: Beijing Normal University Press; 1995.
10.
Zurück zum Zitat Zadeh LA. Fuzzy sets. Inf Control 1965;8(3):338–53. Zadeh LA. Fuzzy sets. Inf Control 1965;8(3):338–53.
11.
Zurück zum Zitat Schmucker KJ. Fuzzy sets, natural language computations, and risk analysis. Rockvill: Computer Science Press; 1984. Schmucker KJ. Fuzzy sets, natural language computations, and risk analysis. Rockvill: Computer Science Press; 1984.
12.
Zurück zum Zitat Yager RR. Uncertainty representation using fuzzy measures. IEEE Trans Syst Man Cybern B: Cybern 2002; 32(1):13–20. Yager RR. Uncertainty representation using fuzzy measures. IEEE Trans Syst Man Cybern B: Cybern 2002; 32(1):13–20.
13.
Zurück zum Zitat Pawlak Z. Rough sets. Int J Comput Inform Sci 1982;11(5):341–56. Pawlak Z. Rough sets. Int J Comput Inform Sci 1982;11(5):341–56.
14.
Zurück zum Zitat Yao YY. Interpreting concept learning in cognitive informatics and granular computing. IEEE Trans Syst Man Cybern B: Cybern 2009;39(4):855–66. Yao YY. Interpreting concept learning in cognitive informatics and granular computing. IEEE Trans Syst Man Cybern B: Cybern 2009;39(4):855–66.
15.
Zurück zum Zitat Wille R. Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival I, editor. Ordered sets. Dordrecht-Boston: Reidel; 1982, pp. 445–70. Wille R. Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival I, editor. Ordered sets. Dordrecht-Boston: Reidel; 1982, pp. 445–70.
16.
Zurück zum Zitat Wille R. Concept lattices and conceptual knowledge systems. Comput Math Appl 1992;23:493–515. Wille R. Concept lattices and conceptual knowledge systems. Comput Math Appl 1992;23:493–515.
17.
Zurück zum Zitat Ganter B, Wille R. Formal concept analysis. Germany: Springer; 1999. Ganter B, Wille R. Formal concept analysis. Germany: Springer; 1999.
18.
Zurück zum Zitat Li DY, Meng HJ, Shi XM. Membership clouds and cloud generators. J Comput Res Dev 1995;32(6):15–20. Li DY, Meng HJ, Shi XM. Membership clouds and cloud generators. J Comput Res Dev 1995;32(6):15–20.
19.
Zurück zum Zitat Li DY, Liu CY, Gan WY. A new cognitive model: cloud model. Int J Intell Syst 2009;24:357–75. Li DY, Liu CY, Gan WY. A new cognitive model: cloud model. Int J Intell Syst 2009;24:357–75.
20.
Zurück zum Zitat Ding SF, Han YZ, Yu JZ, Gu YX. A fast fuzzy support vector machine based on information granulation. Neural Comput Appl 2013;23(1):S139–44. Ding SF, Han YZ, Yu JZ, Gu YX. A fast fuzzy support vector machine based on information granulation. Neural Comput Appl 2013;23(1):S139–44.
21.
Zurück zum Zitat Du MJ, Ding SF, Xue Y. A robust density peaks clustering algorithm using fuzzy neighborhood. Int J Mach Learn Cybern 2018;9(7):1131–40. Du MJ, Ding SF, Xue Y. A robust density peaks clustering algorithm using fuzzy neighborhood. Int J Mach Learn Cybern 2018;9(7):1131–40.
22.
Zurück zum Zitat Rubin SH. Computing with words. IEEE Trans Syst Man Cybern B: Cybern 1999;29(4):518–24. Rubin SH. Computing with words. IEEE Trans Syst Man Cybern B: Cybern 1999;29(4):518–24.
24.
Zurück zum Zitat Chen Y, Argentinis JD E, Weber G. IBM Waston: how cognitive computing can be applied to big data challenges in life sciences research. Clin Ther 2016;38(4):688–701.PubMed Chen Y, Argentinis JD E, Weber G. IBM Waston: how cognitive computing can be applied to big data challenges in life sciences research. Clin Ther 2016;38(4):688–701.PubMed
26.
Zurück zum Zitat Coccoli M, Maresca P, Stanganelli L. The role of big data and cognitive computing in the learning process. J Vis Lang Comput 2017;38:97–103. Coccoli M, Maresca P, Stanganelli L. The role of big data and cognitive computing in the learning process. J Vis Lang Comput 2017;38:97–103.
29.
Zurück zum Zitat Daleiden EL, Chorpita BF. From data to wisdom: quality improvement strategies supporting large-scale implementation of evidence-based services. Child Adolesc Psychiatric Clin N Am 2005;14:329–49. Daleiden EL, Chorpita BF. From data to wisdom: quality improvement strategies supporting large-scale implementation of evidence-based services. Child Adolesc Psychiatric Clin N Am 2005;14:329–49.
30.
Zurück zum Zitat Skowron A, Jankowski A, Dutta S. Interactive granular computing. Granul Comput 2016;1(2):95–113. Skowron A, Jankowski A, Dutta S. Interactive granular computing. Granul Comput 2016;1(2):95–113.
31.
Zurück zum Zitat Song ML, Wang YB. A study of granular computing in the agenda of growth of artificial neural networks. Granul Comput 2016;1(4):247–57. Song ML, Wang YB. A study of granular computing in the agenda of growth of artificial neural networks. Granul Comput 2016;1(4):247–57.
32.
Zurück zum Zitat Peters G, Weber R. Dcc: a framework for dynamic granular clustering. Granul Comput 2016;1(1):1–11. Peters G, Weber R. Dcc: a framework for dynamic granular clustering. Granul Comput 2016;1(1):1–11.
33.
Zurück zum Zitat Xu J, Wang GY, Deng WH. Denpehc: density peak based efficient hierarchical clustering. Inf Sci 2016;373:200–18. Xu J, Wang GY, Deng WH. Denpehc: density peak based efficient hierarchical clustering. Inf Sci 2016;373:200–18.
34.
Zurück zum Zitat Chen L. Topological structure in visual perception. Science 1982;218(4573):699–700.PubMed Chen L. Topological structure in visual perception. Science 1982;218(4573):699–700.PubMed
35.
Zurück zum Zitat Han SH, Chen L. The relationship between global properties and local properties-global precedence. Adv Psychol Sci 1996;4(1):36–41. Han SH, Chen L. The relationship between global properties and local properties-global precedence. Adv Psychol Sci 1996;4(1):36–41.
36.
Zurück zum Zitat Chen L, Zhang S, Srinivasan MV. Global perception in small brains: topological pattern recognition in honey bees. Proc Natl Acad Sci 2003;100(11):6884–9.PubMed Chen L, Zhang S, Srinivasan MV. Global perception in small brains: topological pattern recognition in honey bees. Proc Natl Acad Sci 2003;100(11):6884–9.PubMed
37.
Zurück zum Zitat Zhao F, Zeng Y, Wang G, et al. A brain-inspired decision making model based on top-down biasing of prefrontal cortex to basal ganglia and its application in autonomous UAV explorations. Cogn Comput 2018;10(2):296–306. Zhao F, Zeng Y, Wang G, et al. A brain-inspired decision making model based on top-down biasing of prefrontal cortex to basal ganglia and its application in autonomous UAV explorations. Cogn Comput 2018;10(2):296–306.
38.
Zurück zum Zitat Li Y, Pan Q, Yang T, et al. Learning Word representations for sentiment analysis. Cogn Comput 2017;9(6):843–51. Li Y, Pan Q, Yang T, et al. Learning Word representations for sentiment analysis. Cogn Comput 2017;9(6):843–51.
39.
Zurück zum Zitat Ramírez-Bogantes M, Prendas-Rojas JP, Figueroa-Mata G, et al. Cognitive modeling of the natural behavior of the varroa destructor mite on video. Cogn Comput 2017;9(4):482–93. Ramírez-Bogantes M, Prendas-Rojas JP, Figueroa-Mata G, et al. Cognitive modeling of the natural behavior of the varroa destructor mite on video. Cogn Comput 2017;9(4):482–93.
40.
Zurück zum Zitat Wang GY, Yang J, Xu J. Granular computing: from granularity optimization to multi-granularity joint problem solving. Granul Comput 2017;2(3):105–120. Wang GY, Yang J, Xu J. Granular computing: from granularity optimization to multi-granularity joint problem solving. Granul Comput 2017;2(3):105–120.
41.
Zurück zum Zitat Wang GY, Xu CL, Zhang QH, Wang XR. P-order normal cloud model recursive definition and analysis of bidirectional cognitive computing. Chin J Comput Phys 2013;36(11):2316–29. Wang GY, Xu CL, Zhang QH, Wang XR. P-order normal cloud model recursive definition and analysis of bidirectional cognitive computing. Chin J Comput Phys 2013;36(11):2316–29.
42.
Zurück zum Zitat Wang GY, Xu CL, Li DY. Generic normal cloud model. Inf Sci 2014;280:1–15. Wang GY, Xu CL, Li DY. Generic normal cloud model. Inf Sci 2014;280:1–15.
43.
Zurück zum Zitat Xu CL, Wang GY, Zhang QH. A new multi-step backward cloud transformation algorithm based on normal cloud model. Fund Inform 2014;133:55–85. Xu CL, Wang GY, Zhang QH. A new multi-step backward cloud transformation algorithm based on normal cloud model. Fund Inform 2014;133:55–85.
44.
Zurück zum Zitat Xu CL, Wang GY. A novel cognitive transformation algorithm based on gaussian cloud model and its application in image segmentation. Numer Algorithms 2017;76(4):1039–70. Xu CL, Wang GY. A novel cognitive transformation algorithm based on gaussian cloud model and its application in image segmentation. Numer Algorithms 2017;76(4):1039–70.
45.
Zurück zum Zitat Li DY, Liu CY. Study on the universality of the normal cloud model. Eng Sci 2004;6(8):28–34. Li DY, Liu CY. Study on the universality of the normal cloud model. Eng Sci 2004;6(8):28–34.
46.
Zurück zum Zitat Wang SL, Li DR, Shi WZ, et al. Cloud model-based spatial data mining. Geogr Inf Sci 2003;9(2):67–78. Wang SL, Li DR, Shi WZ, et al. Cloud model-based spatial data mining. Geogr Inf Sci 2003;9(2):67–78.
47.
Zurück zum Zitat Lu HJ, Wang Y, Li DY, Liu CY. The application of backward cloud in qualitative evaluation. Chin J Comput 2003;26(8):1009–14. Lu HJ, Wang Y, Li DY, Liu CY. The application of backward cloud in qualitative evaluation. Chin J Comput 2003;26(8):1009–14.
48.
Zurück zum Zitat Qin K, Xu K, Du Y, Li DY. An image segmentation approach based on histogram analysis utilizing cloud model. In: Proceedings of the 2010 seventh international conference on fuzzy systems and knowledge discovery (FSKD 2010); 2010. p. 524–8. Qin K, Xu K, Du Y, Li DY. An image segmentation approach based on histogram analysis utilizing cloud model. In: Proceedings of the 2010 seventh international conference on fuzzy systems and knowledge discovery (FSKD 2010); 2010. p. 524–8.
49.
Zurück zum Zitat Liu CY, Feng M, Dai XJ, Li DY. A new algorithm of backward cloud. J Syst Simul 2004;16(11):2417–20. Liu CY, Feng M, Dai XJ, Li DY. A new algorithm of backward cloud. J Syst Simul 2004;16(11):2417–20.
50.
Zurück zum Zitat Wang LX. The basic mathematical properties of normal cloud and cloud filter. Personal Communication 3. 2011. Wang LX. The basic mathematical properties of normal cloud and cloud filter. Personal Communication 3. 2011.
51.
Zurück zum Zitat Liu Y, Li DY. Statistics on atomized feature of normal cloud model. J Beijing Univ Aeronaut Astronaut 2010;36(11):1320–4. Liu Y, Li DY. Statistics on atomized feature of normal cloud model. J Beijing Univ Aeronaut Astronaut 2010;36(11):1320–4.
Metadaten
Titel
Bidirectional Cognitive Computing Model for Uncertain Concepts
verfasst von
Changlin Xu
Guoyin Wang
Publikationsdatum
17.07.2019
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 5/2019
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-019-09666-8

Weitere Artikel der Ausgabe 5/2019

Cognitive Computation 5/2019 Zur Ausgabe