Skip to main content
Erschienen in: Rare Metals 7/2020

03.06.2020

Bifunctional iron-phtalocyanine metal–organic framework catalyst for ORR, OER and rechargeable zinc–air battery

verfasst von: Wen-Zheng Cheng, Jia-Lin Liang, Heng-Bo Yin, Ya-Jin Wang, Wen-Fu Yan, Jia-Nan Zhang

Erschienen in: Rare Metals | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Exploring non-noble metal and high-activity electrocatalysts through a simple and controllable protocol remains a great challenge for oxygen reduction reaction (ORR) and zinc–air batteries. Herein, we developed a melt polymerization strategy to synthesize iron-polyphthalocyanine (FePPc) metallic–organic frameworks (MOFs) over the carbon black matrix (FePPc@CB). Through non-covalent \(\uppi\)\(\uppi\) interactions, FePPc molecules can anchor on carbon matrix, thus facilitating the electron transfer process and stabilizing the systems. Owing to abundant free electrons and atomically MN4 catalytic sites in the macrocycle structure, FePPc@CB exhibits excellent oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalytic activity. The FePPc@CB also delivers excellent performances for liquid and flexible all-solid-state batteries compared to that of commercial Pt/C, making it a promising ORR/OER electrocatalyst.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Li Y, Dai H. Recent advances in zinc-air batteries. Chem Soc Rev. 2014;43(15):5143. Li Y, Dai H. Recent advances in zinc-air batteries. Chem Soc Rev. 2014;43(15):5143.
[2]
Zurück zum Zitat Tan P, Chen B, Xu H, Zhang H, Cai W, Ni M, Liu M, Shao Z. Flexible Zn– and Li–air batteries: recent advances, challenges, and future perspectives. Energy Environ Sci. 2017;10(10):2056. Tan P, Chen B, Xu H, Zhang H, Cai W, Ni M, Liu M, Shao Z. Flexible Zn– and Li–air batteries: recent advances, challenges, and future perspectives. Energy Environ Sci. 2017;10(10):2056.
[3]
Zurück zum Zitat Pan J, Xu YY, Yang H, Dong Z, Liu H, Xia BY. Advanced architectures and relatives of air electrodes in Zn–Air batteries. Adv Sci. 2018;5(4):1700691. Pan J, Xu YY, Yang H, Dong Z, Liu H, Xia BY. Advanced architectures and relatives of air electrodes in Zn–Air batteries. Adv Sci. 2018;5(4):1700691.
[4]
Zurück zum Zitat Zhao S, Wang DW, Amal R, Dai L. Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage. Adv Mater. 2018;31(9):1801526. Zhao S, Wang DW, Amal R, Dai L. Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage. Adv Mater. 2018;31(9):1801526.
[5]
Zurück zum Zitat Peng Y, Lu B, Chen S. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv Mater. 2018;30(48):1801995. Peng Y, Lu B, Chen S. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv Mater. 2018;30(48):1801995.
[6]
Zurück zum Zitat Xia W, Mahmood A, Liang Z, Zou R, Guo S. Earth-abundant nanomaterials for oxygen reduction. Angew Chem. 2016;55(8):2650. Xia W, Mahmood A, Liang Z, Zou R, Guo S. Earth-abundant nanomaterials for oxygen reduction. Angew Chem. 2016;55(8):2650.
[7]
Zurück zum Zitat Huang X, Shen T, Zhang T, Qiu H, Gu X, Ali Z, Hou Y. Efficient oxygen reduction catalysts of porous carbon nanostructures decorated with transition metal species. Adv Energy Mater. 2019;50(9):1900375. Huang X, Shen T, Zhang T, Qiu H, Gu X, Ali Z, Hou Y. Efficient oxygen reduction catalysts of porous carbon nanostructures decorated with transition metal species. Adv Energy Mater. 2019;50(9):1900375.
[8]
Zurück zum Zitat Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y, Qiao SZ. Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev. 2018;118(13):6337. Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y, Qiao SZ. Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev. 2018;118(13):6337.
[9]
Zurück zum Zitat Choi CH, Lim HK, Chung MW, Chon G, Sahraie NR, Altin A, Sougrati MT, Stievano L, Oh HS, Park ES, Luo F, Strasser P, Dražić G, Mayrhofer K, Kim H, d Jaouen F. Achilles’ heel of iron-based catalysts during oxygen reduction in acidic medium. Energy Environ Sci. 2018;11:3176. Choi CH, Lim HK, Chung MW, Chon G, Sahraie NR, Altin A, Sougrati MT, Stievano L, Oh HS, Park ES, Luo F, Strasser P, Dražić G, Mayrhofer K, Kim H, d Jaouen F. Achilles’ heel of iron-based catalysts during oxygen reduction in acidic medium. Energy Environ Sci. 2018;11:3176.
[10]
Zurück zum Zitat Zhu YG, Shang CQ, Wang ZU, Zhang JQ, Yang MY, Cheng H, Lu ZG. Effect of plating bath composition on chemical composition and oxygen reduction reaction activity of electrodeposited Pt–Co catalysts. Rare Met. 2019;38(2):95. Zhu YG, Shang CQ, Wang ZU, Zhang JQ, Yang MY, Cheng H, Lu ZG. Effect of plating bath composition on chemical composition and oxygen reduction reaction activity of electrodeposited Pt–Co catalysts. Rare Met. 2019;38(2):95.
[11]
Zurück zum Zitat Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38(9):832. Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38(9):832.
[12]
Zurück zum Zitat John H, Oscar S, Maura C, Lorenzo M. Hydrogen storage in a rare-earth perovskite-type oxide La0.6Sr0.4Co0.2Fe0.8O3 for battery applications. Rare Met. 2018;37(12):1003. John H, Oscar S, Maura C, Lorenzo M. Hydrogen storage in a rare-earth perovskite-type oxide La0.6Sr0.4Co0.2Fe0.8O3 for battery applications. Rare Met. 2018;37(12):1003.
[13]
Zurück zum Zitat Pan Y, Liu S, Sun K, Chen X, Wang B, Wu K, Cao X, Cheong WC, Shen R, Han A, Chen Z, Zheng L, Luo J, Lin Y, Liu Y, Wang D, Peng Q, Zhang Q, Chen C, Li Y. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe–N4 catalytic site:a superior trifunctional catalyst for overall water splitting and Zn–air batteries. Angew Chem Int Ed. 2018;57(28):8614. Pan Y, Liu S, Sun K, Chen X, Wang B, Wu K, Cao X, Cheong WC, Shen R, Han A, Chen Z, Zheng L, Luo J, Lin Y, Liu Y, Wang D, Peng Q, Zhang Q, Chen C, Li Y. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe–N4 catalytic site:a superior trifunctional catalyst for overall water splitting and Zn–air batteries. Angew Chem Int Ed. 2018;57(28):8614.
[14]
Zurück zum Zitat Guo Y, Yuan P, Zhang J, Hu Y, Amiinu IS, Wang X, Zhou J, Xia H, Song Z, Xu Q, Mu S. Carbon nanosheets containing discrete Co–Nx–By–C active sites for efficient oxygen electrocatalysis and rechargeable Zn–air batteries. ACS Nano. 2018;12(2):1894. Guo Y, Yuan P, Zhang J, Hu Y, Amiinu IS, Wang X, Zhou J, Xia H, Song Z, Xu Q, Mu S. Carbon nanosheets containing discrete Co–Nx–By–C active sites for efficient oxygen electrocatalysis and rechargeable Zn–air batteries. ACS Nano. 2018;12(2):1894.
[15]
Zurück zum Zitat Li Q, Chen W, Xiao H, Gong Y, Li Z, Zheng L, Zheng X, Yan W, Cheong WC, Shen R, Fu N, Gu L, Zhuang Z, Chen C, Wang D, Peng Q, Li J, Li Y. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv Mater. 2018;30(25):1800588. Li Q, Chen W, Xiao H, Gong Y, Li Z, Zheng L, Zheng X, Yan W, Cheong WC, Shen R, Fu N, Gu L, Zhuang Z, Chen C, Wang D, Peng Q, Li J, Li Y. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv Mater. 2018;30(25):1800588.
[16]
Zurück zum Zitat Xiao M, Zhu J, Ma L, Jin Z, Ge J, Deng X, Hou Y, He Q, Li J, Jia Q, Mukerjee S, Yang R, Jiang Z, Su D, Liu C, Xing W. Microporous framework induced synthesis of single-atom dispersed Fe–N–C acidic ORR catalyst and its in situ reduced Fe–N4 active site identification revealed by X-ray absorption spectroscopy. ACS Catal. 2018;8(4):2824. Xiao M, Zhu J, Ma L, Jin Z, Ge J, Deng X, Hou Y, He Q, Li J, Jia Q, Mukerjee S, Yang R, Jiang Z, Su D, Liu C, Xing W. Microporous framework induced synthesis of single-atom dispersed Fe–N–C acidic ORR catalyst and its in situ reduced Fe–N4 active site identification revealed by X-ray absorption spectroscopy. ACS Catal. 2018;8(4):2824.
[17]
Zurück zum Zitat Zeng X, Shui J, Liu X, Liu Q, Li Y, Shang J, Zheng L, Yu R. Single-atom to single-atom grafting of Pt onto FeN4 center: Pt1@Fe–N–C multifunctional electrocatalyst with significantly enhanced properties. Adv Energy Mater. 2018;8(1):1701345. Zeng X, Shui J, Liu X, Liu Q, Li Y, Shang J, Zheng L, Yu R. Single-atom to single-atom grafting of Pt onto FeN4 center: Pt1@Fe–N–C multifunctional electrocatalyst with significantly enhanced properties. Adv Energy Mater. 2018;8(1):1701345.
[18]
Zurück zum Zitat Cheng W, Yuan P, Lv Z, Guo Y, Qiao Y, Xue X, Liu X, Bai W, Wang K, Xu Q, Zhang J. Boosting defective carbon by anchoring well-defined atomically dispersed metal-N4 sites for ORR, OER, and Zn–air batteries. Appl Catal B Environ. 2020;260:118198. Cheng W, Yuan P, Lv Z, Guo Y, Qiao Y, Xue X, Liu X, Bai W, Wang K, Xu Q, Zhang J. Boosting defective carbon by anchoring well-defined atomically dispersed metal-N4 sites for ORR, OER, and Zn–air batteries. Appl Catal B Environ. 2020;260:118198.
[19]
Zurück zum Zitat Wang YR, Huang Q, He CT, Chen Y, Liu J, Shen FC, Lan YQ. Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nat Commun. 2018;9(1):4466. Wang YR, Huang Q, He CT, Chen Y, Liu J, Shen FC, Lan YQ. Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nat Commun. 2018;9(1):4466.
[20]
Zurück zum Zitat Zhang FM, Sheng JL, Yang ZD, Sun XJ, Tang HL, Lu M, Dong H, Shen FC, Liu J, Lan YQ. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew Chem Int Ed. 2018;57(37):12282. Zhang FM, Sheng JL, Yang ZD, Sun XJ, Tang HL, Lu M, Dong H, Shen FC, Liu J, Lan YQ. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew Chem Int Ed. 2018;57(37):12282.
[21]
Zurück zum Zitat Wang XL, Dong LZ, Qiao M, Tang YJ, Liu J, Li Y, Li SL, Su JX, Lan YQ. Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal-organic framework system. Angew Chem Int Ed. 2018;57(31):9660. Wang XL, Dong LZ, Qiao M, Tang YJ, Liu J, Li Y, Li SL, Su JX, Lan YQ. Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal-organic framework system. Angew Chem Int Ed. 2018;57(31):9660.
[22]
Zurück zum Zitat Lin J, He JR, Qi F, Zheng BJ, Wang XQ, Yu B, Zhou KR, Zhang WL, Li YR, Chen YF. In-situ selenization of Co-based metal-organic frameworks as a highly efficient electrocatalyst for hydrogen evolution reaction. Electacta. 2017;247:258. Lin J, He JR, Qi F, Zheng BJ, Wang XQ, Yu B, Zhou KR, Zhang WL, Li YR, Chen YF. In-situ selenization of Co-based metal-organic frameworks as a highly efficient electrocatalyst for hydrogen evolution reaction. Electacta. 2017;247:258.
[23]
Zurück zum Zitat He JR, Chen YF, Arumugam M. Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li–S batteries. Energy Environ Sci. 2018;11:2560. He JR, Chen YF, Arumugam M. Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li–S batteries. Energy Environ Sci. 2018;11:2560.
[24]
Zurück zum Zitat He JR, Lv WQ, Chen YF, Wen KC, Xu C, Zhang WL, Li YR, Qin W, He WD. Tellurium-impregnated porous cobalt-doped carbon polyhedra as superior cathodes for lithium–tellurium batteries. ACS Nano. 2017;11(8):8144. He JR, Lv WQ, Chen YF, Wen KC, Xu C, Zhang WL, Li YR, Qin W, He WD. Tellurium-impregnated porous cobalt-doped carbon polyhedra as superior cathodes for lithium–tellurium batteries. ACS Nano. 2017;11(8):8144.
[25]
Zurück zum Zitat Wang XQ, He JR, Yu B, Sun BC, Yang DX, Zhang XJ, Zhang QH, Zhang WL, Gu L, Chen YF. CoSe2 nanoparticles embedded MOF-derived Co–N–C nanoflake arrays as efficient and stable electrocatalyst for hydrogen evolution reaction. Appl Catal B Environ. 2019;258:117996. Wang XQ, He JR, Yu B, Sun BC, Yang DX, Zhang XJ, Zhang QH, Zhang WL, Gu L, Chen YF. CoSe2 nanoparticles embedded MOF-derived Co–N–C nanoflake arrays as efficient and stable electrocatalyst for hydrogen evolution reaction. Appl Catal B Environ. 2019;258:117996.
[26]
Zurück zum Zitat He JR, Lv WQ, Chen YF, Xiong J, Wen KC, Xu C, Zhang WL, Li YR, Qin W, He WD. Three-dimensional hierarchical C–Co–N/Se derived from metal-organic framework as superior cathode for Li–Se batteries. J Power Sour. 2017;07:65. He JR, Lv WQ, Chen YF, Xiong J, Wen KC, Xu C, Zhang WL, Li YR, Qin W, He WD. Three-dimensional hierarchical C–Co–N/Se derived from metal-organic framework as superior cathode for Li–Se batteries. J Power Sour. 2017;07:65.
[27]
Zurück zum Zitat He JR, Chen YF, Lv WQ, Wen KC, Xu C, Zhang WL, Li YR, Qin W, He WD. From metal–organic framework to Li2S@C–Co–N nanoporous architecture: a high-capacity cathode for lithium–sulfur batteries. ACS Nano. 2016;10(12):10981. He JR, Chen YF, Lv WQ, Wen KC, Xu C, Zhang WL, Li YR, Qin W, He WD. From metal–organic framework to Li2S@C–Co–N nanoporous architecture: a high-capacity cathode for lithium–sulfur batteries. ACS Nano. 2016;10(12):10981.
[28]
Zurück zum Zitat Du DY, Qin JS, Li SL, Su ZM, Lan YQ. Recent advances in porous polyoxometalatebased metal–organic framework materials. Chem Soc Rev. 2014;43:4615. Du DY, Qin JS, Li SL, Su ZM, Lan YQ. Recent advances in porous polyoxometalatebased metal–organic framework materials. Chem Soc Rev. 2014;43:4615.
[29]
Zurück zum Zitat Jasinski R. A new fuel cell catalyst. Nature. 1964;201:1212. Jasinski R. A new fuel cell catalyst. Nature. 1964;201:1212.
[30]
Zurück zum Zitat Hijazi I, Bourgeteau T, Cornut R, Morozan A, Filoramo A, Leroy J, Derycke V, Jousselme B, Campidelli S. Carbon nanotube-templated synthesis of covalent porphyrin network for oxygen reduction reaction. J Am Chem Soc. 2014;136(17):6348. Hijazi I, Bourgeteau T, Cornut R, Morozan A, Filoramo A, Leroy J, Derycke V, Jousselme B, Campidelli S. Carbon nanotube-templated synthesis of covalent porphyrin network for oxygen reduction reaction. J Am Chem Soc. 2014;136(17):6348.
[31]
Zurück zum Zitat Cao R, Thapa R, Kim H, Xu X, Gyu Kim M, Li Q, Park N, Liu M, Cho J. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat Commun. 2013;4:3076. Cao R, Thapa R, Kim H, Xu X, Gyu Kim M, Li Q, Park N, Liu M, Cho J. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat Commun. 2013;4:3076.
[32]
Zurück zum Zitat Zhu J, Jia N, Yang L, Su D, Park J, Choi Y, Gong K. Heterojunction nanowires having high activity and stability for the reduction of oxygen: formation by self-assembly of iron phthalocyanine with single walled carbon nanotubes (FePc/SWNTs). J Colloid Interface Sci. 2014;419:61. Zhu J, Jia N, Yang L, Su D, Park J, Choi Y, Gong K. Heterojunction nanowires having high activity and stability for the reduction of oxygen: formation by self-assembly of iron phthalocyanine with single walled carbon nanotubes (FePc/SWNTs). J Colloid Interface Sci. 2014;419:61.
[33]
Zurück zum Zitat Wang X, Wang B, Zhong J, Zhao F, Han N, Huang W, Zeng M, Fan J, Li Y. Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: a high-performance electrocatalyst for oxygen reduction reaction. Nano Res. 2016;9(5):1497. Wang X, Wang B, Zhong J, Zhao F, Han N, Huang W, Zeng M, Fan J, Li Y. Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: a high-performance electrocatalyst for oxygen reduction reaction. Nano Res. 2016;9(5):1497.
[34]
Zurück zum Zitat Strickland K, Miner E, Jia Q, Tylus U, Ramaswamy N, Liang W, Sougrati MT, Jaouen F, Mukerjee S. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination. Nat Commun. 2015;6:8343. Strickland K, Miner E, Jia Q, Tylus U, Ramaswamy N, Liang W, Sougrati MT, Jaouen F, Mukerjee S. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination. Nat Commun. 2015;6:8343.
[35]
Zurück zum Zitat Zitolo A, Goellner V, Armel V, Sougrati MT, Mineva T, Stievano L, Fonda E, Jaouen F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat Mater. 2015;14(9):937. Zitolo A, Goellner V, Armel V, Sougrati MT, Mineva T, Stievano L, Fonda E, Jaouen F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat Mater. 2015;14(9):937.
[36]
Zurück zum Zitat Su CY, Cheng H, Li W, Liu ZQ, Li N, Hou Z, Bai FQ, Zhang HX, Ma TY. Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv Energy Mater. 2017;7(13):1602420. Su CY, Cheng H, Li W, Liu ZQ, Li N, Hou Z, Bai FQ, Zhang HX, Ma TY. Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv Energy Mater. 2017;7(13):1602420.
[37]
Zurück zum Zitat Li Y, Chen B, Duan X, Chen S, Liu D, Zang K, Si R, Lou F, Wang X, Rønning M, Song L, Luo J, Chen D. Atomically dispersed Fe–N–P–C complex electrocatalysts for superior oxygen reduction. Appl Catal B Environ. 2019;249:306. Li Y, Chen B, Duan X, Chen S, Liu D, Zang K, Si R, Lou F, Wang X, Rønning M, Song L, Luo J, Chen D. Atomically dispersed Fe–N–P–C complex electrocatalysts for superior oxygen reduction. Appl Catal B Environ. 2019;249:306.
[38]
Zurück zum Zitat Liu W, Zhang L, Liu X, Liu X, Yang X, Miao S, Wang W, Wang A, Zhang T. Discriminating catalytically active FeNx species of atomically dispersed Fe–N–C catalyst for selective oxidation of the C–H bond. J Am Chem Soc. 2017;139(31):10790. Liu W, Zhang L, Liu X, Liu X, Yang X, Miao S, Wang W, Wang A, Zhang T. Discriminating catalytically active FeNx species of atomically dispersed Fe–N–C catalyst for selective oxidation of the C–H bond. J Am Chem Soc. 2017;139(31):10790.
[39]
Zurück zum Zitat Varnell J, Tse EC, Schulz CE, Fister TT, Haasch RT, Timoshenko J, Frenkel AI, Gewirth AA. Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts. Nat Commun. 2016;7:12582. Varnell J, Tse EC, Schulz CE, Fister TT, Haasch RT, Timoshenko J, Frenkel AI, Gewirth AA. Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts. Nat Commun. 2016;7:12582.
[40]
Zurück zum Zitat Li Z, Zhuang Z, Lv F, Zhu H, Zhou L, Luo M, Zhu J, Lang Z, Feng S, Chen W, Mai L, Guo S. The marriage of the FeN4 moiety and Mxene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv Mater. 2018;30(43):1803220. Li Z, Zhuang Z, Lv F, Zhu H, Zhou L, Luo M, Zhu J, Lang Z, Feng S, Chen W, Mai L, Guo S. The marriage of the FeN4 moiety and Mxene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv Mater. 2018;30(43):1803220.
[41]
Zurück zum Zitat Xue X, Yang H, Yang T, Yuan P, Li Q, Mu S, Zheng X, Chi L, Zhu J, Li Y, Zhang J, Xu Q. N, P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electrocatalysis for CO2RR, ORR and Zn–air battery. J Mater Chem A. 2019;7(25):15271. Xue X, Yang H, Yang T, Yuan P, Li Q, Mu S, Zheng X, Chi L, Zhu J, Li Y, Zhang J, Xu Q. N, P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electrocatalysis for CO2RR, ORR and Zn–air battery. J Mater Chem A. 2019;7(25):15271.
[42]
Zurück zum Zitat Cheng Y, Wu X, Veder JP, Thomsen L, Jiang SP, Wang SY. Tuning the electrochemical property of the ultrafine metal-oxide nanoclusters by iron phthalocyanine as efficient catalysts for energy storage and conversion. Energy Environ Mater. 2019;2(1):5. Cheng Y, Wu X, Veder JP, Thomsen L, Jiang SP, Wang SY. Tuning the electrochemical property of the ultrafine metal-oxide nanoclusters by iron phthalocyanine as efficient catalysts for energy storage and conversion. Energy Environ Mater. 2019;2(1):5.
[43]
Zurück zum Zitat Yang W, Zhang Y, Liu X, Chen L, Jia J. In situ formed Fe–N doped metal organic framework@carbon nanotubes/graphene hybrids for a rechargeable Zn–air battery. Chem Commun. 2017;53(96):12934. Yang W, Zhang Y, Liu X, Chen L, Jia J. In situ formed Fe–N doped metal organic framework@carbon nanotubes/graphene hybrids for a rechargeable Zn–air battery. Chem Commun. 2017;53(96):12934.
Metadaten
Titel
Bifunctional iron-phtalocyanine metal–organic framework catalyst for ORR, OER and rechargeable zinc–air battery
verfasst von
Wen-Zheng Cheng
Jia-Lin Liang
Heng-Bo Yin
Ya-Jin Wang
Wen-Fu Yan
Jia-Nan Zhang
Publikationsdatum
03.06.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 7/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01440-2

Weitere Artikel der Ausgabe 7/2020

Rare Metals 7/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.