Skip to main content
Erschienen in: Wireless Personal Communications 1/2018

09.02.2018

Bifurcation Analysis About a Mathematical Model of Somitogenesis Based on the Runge–Kutta Method

verfasst von: Linan Guan, Jianwei Shen

Erschienen in: Wireless Personal Communications | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we investigated the modified two dimensional model which can explain somite patterning in embryos. It is suitable for exploring a design space of somitogenesis and can explain aspects of somitogenesis that previous models cannot. Here, we mainly studied the non-diffusing case. We have used the Hopf bifurcation theorem, the Center manifold theorem and Runge–Kutta method in our investigation. First, we investigate its dynamical behaviors and put forward a sufficient condition for the oscillation of the small network. Then, we give the mathematical simulation based on the Runge–Kutta method. In the process of solving ordinary differential equations, the four order Runge–Kutta method has the advantages of high accuracy, convergence and stability (under certain conditions), which can change the step size and do not need to calculate higher order derivatives. Therefore, it has become the most commonly used numerical solution. At the same time, we get the sufficient condition in which the bistable state of the system exists and give the numerical simulation. Because somitogenesis occupies an important position in the process of biological development, and as a pattern process can be used to study pattern formation and many aspects of embryogenesis. So our study have a great help for embryonic development, gene expression, cell differentiation. In addition, it is beneficial to study the clone animal variation problem of spinal bone number and is of great help to the treatment and prevention of defects of human spine disease.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cooke, J. (1975). Control of somite number during morphogenesis of a vertebrate, Xenopus laevis[J]. Nature, 254(5479), 196–199.CrossRef Cooke, J. (1975). Control of somite number during morphogenesis of a vertebrate, Xenopus laevis[J]. Nature, 254(5479), 196–199.CrossRef
2.
Zurück zum Zitat McGrew, M. J., & Pourquie, O. (1998). Somitogenesis: Segmenting a vertebrate. Current Opinion in Genetics & Development, 8(4), 487–493.CrossRef McGrew, M. J., & Pourquie, O. (1998). Somitogenesis: Segmenting a vertebrate. Current Opinion in Genetics & Development, 8(4), 487–493.CrossRef
3.
Zurück zum Zitat Cotterell, J., Robert-Moreno, A., & Sharpe, J. (2015). A local, self-organizing reaction-diffusion model can explain somite patterning in embryos. Cell Systems, 1(4), 257–269.CrossRef Cotterell, J., Robert-Moreno, A., & Sharpe, J. (2015). A local, self-organizing reaction-diffusion model can explain somite patterning in embryos. Cell Systems, 1(4), 257–269.CrossRef
4.
Zurück zum Zitat Kulesa, P. M., Schnell, S., Rudloff, S., Baker, R. E., & Maini, P. K. (2007). From segment to somite: Segmentation to epithelialization analyzed within quantitative frameworks. Developmental Dynamics, 236, 1392–1402.CrossRef Kulesa, P. M., Schnell, S., Rudloff, S., Baker, R. E., & Maini, P. K. (2007). From segment to somite: Segmentation to epithelialization analyzed within quantitative frameworks. Developmental Dynamics, 236, 1392–1402.CrossRef
5.
Zurück zum Zitat Cooke, J., & Zeeman, E. C. (1976). A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. Journal of Theoretical Biology, 58, 455–476.CrossRef Cooke, J., & Zeeman, E. C. (1976). A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. Journal of Theoretical Biology, 58, 455–476.CrossRef
6.
Zurück zum Zitat Meinhardt, H. (1996). Model of biological pattern formation: Common mechanism in plant and animal development. International Journal of Developmental Biology, 40, 123–134. Meinhardt, H. (1996). Model of biological pattern formation: Common mechanism in plant and animal development. International Journal of Developmental Biology, 40, 123–134.
7.
Zurück zum Zitat Polezhaev, A. A. (1992). A mathematical model of the mechanism of vertebrate somitic segmentation. Journal of Theoretical Biology, 156(2), 169–181.CrossRef Polezhaev, A. A. (1992). A mathematical model of the mechanism of vertebrate somitic segmentation. Journal of Theoretical Biology, 156(2), 169–181.CrossRef
8.
Zurück zum Zitat Schnell, S., & Maini, P. K. (2000). Clock and induction model for somitogenesis. Developmental Dynamics, 217(4), 415–420.CrossRef Schnell, S., & Maini, P. K. (2000). Clock and induction model for somitogenesis. Developmental Dynamics, 217(4), 415–420.CrossRef
9.
Zurück zum Zitat Collier, J. R., Mcinerney, D., Schnell, S., Maini, P. K., Gavaghan, D. J., Houston, P., et al. (2000). A cell cycle model for somitogenesis: Mathematical formulation and numerical simulation. Journal of Theoretical Biology, 207(3), 305–316.CrossRef Collier, J. R., Mcinerney, D., Schnell, S., Maini, P. K., Gavaghan, D. J., Houston, P., et al. (2000). A cell cycle model for somitogenesis: Mathematical formulation and numerical simulation. Journal of Theoretical Biology, 207(3), 305–316.CrossRef
10.
Zurück zum Zitat Kerszberg, M., & Wolpert, L. (2000). A clock and trail model for somite formation, specialization and polarization. Journal of Theoretical Biology, 205(3), 505–510.CrossRef Kerszberg, M., & Wolpert, L. (2000). A clock and trail model for somite formation, specialization and polarization. Journal of Theoretical Biology, 205(3), 505–510.CrossRef
11.
Zurück zum Zitat Herrgen, L., Ares, S., Morelli, L. G., Schroter, C., Julicher, F., & Oates, A. C. (2010). Intercellular coupling regulates the period of the segmentation clock. Current Biology, 20, 1244–1253.CrossRef Herrgen, L., Ares, S., Morelli, L. G., Schroter, C., Julicher, F., & Oates, A. C. (2010). Intercellular coupling regulates the period of the segmentation clock. Current Biology, 20, 1244–1253.CrossRef
12.
Zurück zum Zitat Baker, R. E., Schnell, S., & Maini, P. K. (2006). A mathematical investigation of a clock and wavefront model for somitogenesis. Journal of Mathematical Biology, 52, 458–482.MathSciNetCrossRef Baker, R. E., Schnell, S., & Maini, P. K. (2006). A mathematical investigation of a clock and wavefront model for somitogenesis. Journal of Mathematical Biology, 52, 458–482.MathSciNetCrossRef
13.
Zurück zum Zitat Baker, R. E., Schnell, S., & Maini, P. K. (2006). A clock and wavefront mechanism for somite formation. Development Biology, 293, 116–126.CrossRef Baker, R. E., Schnell, S., & Maini, P. K. (2006). A clock and wavefront mechanism for somite formation. Development Biology, 293, 116–126.CrossRef
14.
Zurück zum Zitat Polezhaev, A. A. (1995). Mathematical modelling of the mechanism of vertebrate somitic segmentation. Journal of Biological Systems, 3(04), 1041–1051.CrossRef Polezhaev, A. A. (1995). Mathematical modelling of the mechanism of vertebrate somitic segmentation. Journal of Biological Systems, 3(04), 1041–1051.CrossRef
15.
Zurück zum Zitat Lin, G., & Slack, J. M. (2008). Requirement for Wnt and FGF signaling in Xenopus tadpole tail regeneration. Development Biology, 316, 323–335.CrossRef Lin, G., & Slack, J. M. (2008). Requirement for Wnt and FGF signaling in Xenopus tadpole tail regeneration. Development Biology, 316, 323–335.CrossRef
16.
Zurück zum Zitat Polezhayev, A. A. (1995). Mathematical model of segmentation in somitogenesis in vertebrates. Biophysics, 3(40), 583–589. Polezhayev, A. A. (1995). Mathematical model of segmentation in somitogenesis in vertebrates. Biophysics, 3(40), 583–589.
17.
Zurück zum Zitat Murray, P. J., Maini, P. K., & Baker, R. E. (2011). The clock and wavefront model revisited. Journal of Theoretical Biology, 283, 227–238.MathSciNetCrossRef Murray, P. J., Maini, P. K., & Baker, R. E. (2011). The clock and wavefront model revisited. Journal of Theoretical Biology, 283, 227–238.MathSciNetCrossRef
18.
Zurück zum Zitat Munoz Alicea, R. (2011). Introduction to bifurcations and the Hopf bifurcation theorem for planar systems. Opreation for Mathematics, 640, 11. Munoz Alicea, R. (2011). Introduction to bifurcations and the Hopf bifurcation theorem for planar systems. Opreation for Mathematics, 640, 11.
19.
Zurück zum Zitat Kuznetsov, Y. (2006). Andronov-Hopf bifurcation. Scholarpedia, 1(10), 1858.CrossRef Kuznetsov, Y. (2006). Andronov-Hopf bifurcation. Scholarpedia, 1(10), 1858.CrossRef
20.
Zurück zum Zitat Dhooge, A., Govaerts, W., & Kuznetsov, Y. A. (2003). MATCONT: A Matlab package for numerical bifurcation analysis of ODEs. ACM Transactions on Mathematical Software, 29, 141–164.MathSciNetCrossRef Dhooge, A., Govaerts, W., & Kuznetsov, Y. A. (2003). MATCONT: A Matlab package for numerical bifurcation analysis of ODEs. ACM Transactions on Mathematical Software, 29, 141–164.MathSciNetCrossRef
21.
Zurück zum Zitat Kuehn, C. (2012). From first lyapunov coefficients to maximal canards. International Journal of Bifurcation and Chaos, 20(5), 1467–1475.MathSciNetCrossRef Kuehn, C. (2012). From first lyapunov coefficients to maximal canards. International Journal of Bifurcation and Chaos, 20(5), 1467–1475.MathSciNetCrossRef
22.
Zurück zum Zitat Sarmah, H. K., Baishya, T. K., & Das, M. C. (2014). Hopf-bifurcation in a two dimensional nonlinear differential equation. International Journal of Modern Engineering and Research Technology, 4, 2249–6645. Sarmah, H. K., Baishya, T. K., & Das, M. C. (2014). Hopf-bifurcation in a two dimensional nonlinear differential equation. International Journal of Modern Engineering and Research Technology, 4, 2249–6645.
23.
Zurück zum Zitat Das D., Banerjee, D. & Bhattacharjee, J. K. (2013). Super-critical and Sub-Critical Hopf bifurcations in two and three dimensions. arXiv:1309.5470v1. Das D., Banerjee, D. & Bhattacharjee, J. K. (2013). Super-critical and Sub-Critical Hopf bifurcations in two and three dimensions. arXiv:​1309.​5470v1.
24.
Zurück zum Zitat Chen, K. W., Liao, K. L., & Shih, C. W. (2018). The kinetics in mathematical models on segmentation clock genes in zebrafish. Journal of Mathematical Biology, 76(1–2), 97–150.MathSciNetCrossRef Chen, K. W., Liao, K. L., & Shih, C. W. (2018). The kinetics in mathematical models on segmentation clock genes in zebrafish. Journal of Mathematical Biology, 76(1–2), 97–150.MathSciNetCrossRef
25.
Zurück zum Zitat Shimono, Y., Yamaguchi, I., Ishimatsu, K., Akao, A., Ogawa, Y., Jimbo, Y., & Kotani, K. (2018) Evaluation of heuristic reductions of a model for the segmentation clock in zebrafish. In IEEJ transactions on electrical and electronic engineering. Shimono, Y., Yamaguchi, I., Ishimatsu, K., Akao, A., Ogawa, Y., Jimbo, Y., & Kotani, K. (2018) Evaluation of heuristic reductions of a model for the segmentation clock in zebrafish. In IEEJ transactions on electrical and electronic engineering.
26.
Zurück zum Zitat Ajima, R., Suzuki, E., & Saga, Y. (2017). Pofut1 point-mutations that disrupt O-fucosyltransferase activity destabilize the protein and abolish Notch1 signaling during mouse somitogenesis. PLoS ONE, 12(11), e0187248.CrossRef Ajima, R., Suzuki, E., & Saga, Y. (2017). Pofut1 point-mutations that disrupt O-fucosyltransferase activity destabilize the protein and abolish Notch1 signaling during mouse somitogenesis. PLoS ONE, 12(11), e0187248.CrossRef
27.
Zurück zum Zitat Gallagher, T. L., Tietz, K. T., Morrow, Z. T., McCammon, J. M., Goldrich, M. L., Derr, N. L., et al. (2017). Pnrc2 regulates 3’UTR-mediated decay of segmentation clock-associated transcripts during zebrafish segmentation. Developmental Biology, 429(1), 225–239.CrossRef Gallagher, T. L., Tietz, K. T., Morrow, Z. T., McCammon, J. M., Goldrich, M. L., Derr, N. L., et al. (2017). Pnrc2 regulates 3’UTR-mediated decay of segmentation clock-associated transcripts during zebrafish segmentation. Developmental Biology, 429(1), 225–239.CrossRef
28.
Zurück zum Zitat Uriu, K., Bhavna, R., Oates, A. C., & Morelli, L. G. (2017). A framework for quantification and physical modeling of cell mixing applied to oscillator synchronization in vertebrate somitogenesis. Biology Open, 6, 1235.CrossRef Uriu, K., Bhavna, R., Oates, A. C., & Morelli, L. G. (2017). A framework for quantification and physical modeling of cell mixing applied to oscillator synchronization in vertebrate somitogenesis. Biology Open, 6, 1235.CrossRef
Metadaten
Titel
Bifurcation Analysis About a Mathematical Model of Somitogenesis Based on the Runge–Kutta Method
verfasst von
Linan Guan
Jianwei Shen
Publikationsdatum
09.02.2018
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2018
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-018-5437-7

Weitere Artikel der Ausgabe 1/2018

Wireless Personal Communications 1/2018 Zur Ausgabe

Neuer Inhalt