Skip to main content

2018 | Supplement | Buchkapitel

5. Big Data and Data Science Applications for Independent and Healthy Living

verfasst von : Robert Keight, Dhiya Al-Jumeily, Abir Hussain, Paul Fergus, Jamila Mustafina

Erschienen in: Technology for Smart Futures

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Paralleling the state of human progress, developments in healthcare reflect a deeply entrained drive to improve the parameters governing our own existence, including both those which threaten to disrupt our biological functions and followed by those which limit our ability to improve the effectiveness of the former [1, 2]. The technology of the past has allowed us to improve the conditions of our environment and to undertake limited medical interventions in the absence of a direct understanding of disease-causing mechanisms [2]. It is the arrival of the modern era that has opened unprecedented understanding of biological systems and disease mechanisms [3–9], yet such depth of knowledge has also brought a wider realisation of the full complexity and scale of the systems responsible for the biological processes underpinning our existence [10–13]. It is clear that in order to rise to the unprecedented challenges presented by such novel domains, the methods at our disposal must be advanced accordingly to support the changing nature of our task frameworks. The idea that representable forms of information processing may underpin familiar (and novel) forms of intelligence, such as the human brain, raises the possibility that intelligence itself may be practically simulated in alternative settings, for example, via computation, providing a capacity to sustainably address problems of arbitrary complexity. The field of intelligent systems, a research direction within the wider field of artificial intelligence (AI), is concerned with enabling the computational resources of today for the construction of systems that may respond to problems through intelligent abstractions, whose parameters differ from human cognition. Through the combination of computational infrastructure and the patterns of intelligence in this way, it is conceivable that the frontiers of healthcare and medicine may be sustainably advanced to address the broad challenges that underpin the current era.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rosen, G., & Imperato, P. J. (2015). A history of public health. Baltimore: JHU Press. Rosen, G., & Imperato, P. J. (2015). A history of public health. Baltimore: JHU Press.
2.
Zurück zum Zitat Porter, D. (1999). Health, civilization, and the state: A history of public health from ancient to modern times. London/New York: Psychology Press. Porter, D. (1999). Health, civilization, and the state: A history of public health from ancient to modern times. London/New York: Psychology Press.
3.
Zurück zum Zitat Lederberg, J. (2000). Infectious history. Science, 288(5464), 287–293.CrossRef Lederberg, J. (2000). Infectious history. Science, 288(5464), 287–293.CrossRef
4.
Zurück zum Zitat Tomes, N. (1990). The private side of public health: Sanitary science, domestic hygiene, and the germ theory, 1870–1900. Bulletin of the History of Medicine, 64(4), 509. Tomes, N. (1990). The private side of public health: Sanitary science, domestic hygiene, and the germ theory, 1870–1900. Bulletin of the History of Medicine, 64(4), 509.
5.
Zurück zum Zitat Lawrence, C., & Dixey, R. (1992). Practising on principle: Joseph Lister and the germ theories of disease. In Medical theory, surgical practice: Studies in the history of surgery (pp. 153–215). London: Routledge. Lawrence, C., & Dixey, R. (1992). Practising on principle: Joseph Lister and the germ theories of disease. In Medical theory, surgical practice: Studies in the history of surgery (pp. 153–215). London: Routledge.
6.
Zurück zum Zitat Pray, L. (2008). Discovery of DNA structure and function: Watson and Crick. Nature Education, 1(1), 100. Pray, L. (2008). Discovery of DNA structure and function: Watson and Crick. Nature Education, 1(1), 100.
7.
Zurück zum Zitat Wells, P. (2001). Physics and engineering: Milestones in medicine. Medical Engineering & Physics, 23(3), 147–153.CrossRef Wells, P. (2001). Physics and engineering: Milestones in medicine. Medical Engineering & Physics, 23(3), 147–153.CrossRef
8.
Zurück zum Zitat Hockstein, N., Gourin, C., Faust, R., & Terris, D. J. (2007). A history of robots: From science fiction to surgical robotics. Journal of Robotic Surgery, 1(2), 113–118.CrossRef Hockstein, N., Gourin, C., Faust, R., & Terris, D. J. (2007). A history of robots: From science fiction to surgical robotics. Journal of Robotic Surgery, 1(2), 113–118.CrossRef
9.
Zurück zum Zitat Yates, D. R., Vaessen, C., & Roupret, M. (2011). From Leonardo to da Vinci: The history of robot-assisted surgery in urology. BJU International, 108(11), 1708–1713.CrossRef Yates, D. R., Vaessen, C., & Roupret, M. (2011). From Leonardo to da Vinci: The history of robot-assisted surgery in urology. BJU International, 108(11), 1708–1713.CrossRef
10.
Zurück zum Zitat Bruggeman, F. J., Westerhoff, H. V., & Boogerd, F. C. (2002). BioComplexity: A pluralist research strategy is necessary for a mechanistic explanation of the “live” state. Philosophical Psychology, 15(4), 411–440.CrossRef Bruggeman, F. J., Westerhoff, H. V., & Boogerd, F. C. (2002). BioComplexity: A pluralist research strategy is necessary for a mechanistic explanation of the “live” state. Philosophical Psychology, 15(4), 411–440.CrossRef
11.
Zurück zum Zitat Covich, A. (2000). Biocomplexity and the future: The need to unite disciplines. Bioscience, 50(12), 1035.CrossRef Covich, A. (2000). Biocomplexity and the future: The need to unite disciplines. Bioscience, 50(12), 1035.CrossRef
12.
Zurück zum Zitat Michener, W. K., Baerwald, T. J., Firth, P., Palmer, M. A., Rosenberger, J. L., Sandlin, E. A., & Zimmerman, H. (2001). Defining and unraveling biocomplexity. Bioscience, 51(12), 1018–1023.CrossRef Michener, W. K., Baerwald, T. J., Firth, P., Palmer, M. A., Rosenberger, J. L., Sandlin, E. A., & Zimmerman, H. (2001). Defining and unraveling biocomplexity. Bioscience, 51(12), 1018–1023.CrossRef
13.
Zurück zum Zitat Nicholson, J. K., Holmes, E., Lindon, J. C., & Wilson, I. D. (2004). The challenges of modeling mammalian biocomplexity. Nature Biotechnology, 22(10), 1268–1274.CrossRef Nicholson, J. K., Holmes, E., Lindon, J. C., & Wilson, I. D. (2004). The challenges of modeling mammalian biocomplexity. Nature Biotechnology, 22(10), 1268–1274.CrossRef
14.
Zurück zum Zitat Collins, F., Galas, D., et al. (1993). A new five-year plan for the US human genome project. SCIENCE-NEW YORK THEN WASHINGTON, 262, 43–43.CrossRef Collins, F., Galas, D., et al. (1993). A new five-year plan for the US human genome project. SCIENCE-NEW YORK THEN WASHINGTON, 262, 43–43.CrossRef
15.
Zurück zum Zitat Sawicki, M. P., Samara, G., Hurwitz, M., & Passaro, E. (1993). Human genome project. The American Journal of Surgery, 165(2), 258–264.CrossRef Sawicki, M. P., Samara, G., Hurwitz, M., & Passaro, E. (1993). Human genome project. The American Journal of Surgery, 165(2), 258–264.CrossRef
16.
Zurück zum Zitat Collins, F. S., & McKusick, V. A. (2001). Implications of the human genome project for medical science. JAMA, 285(5), 540–544.CrossRef Collins, F. S., & McKusick, V. A. (2001). Implications of the human genome project for medical science. JAMA, 285(5), 540–544.CrossRef
17.
Zurück zum Zitat Collins, F. S. (1999). Medical and societal consequences of the human genome project. New England Journal of Medicine, 341(1), 28–37.CrossRef Collins, F. S. (1999). Medical and societal consequences of the human genome project. New England Journal of Medicine, 341(1), 28–37.CrossRef
18.
Zurück zum Zitat Collins, F. S., Patrinos, A., Jordan, E., Chakravarti, A., Gesteland, R., Walters, L., et al. (1998). New goals for the US human genome project: 1998-2003. Science, 282(5389), 682–689.CrossRef Collins, F. S., Patrinos, A., Jordan, E., Chakravarti, A., Gesteland, R., Walters, L., et al. (1998). New goals for the US human genome project: 1998-2003. Science, 282(5389), 682–689.CrossRef
19.
Zurück zum Zitat Kevles, D. J., & Hood, L. E. (1993). The code of codes: Scientific and social issues in the human genome project. Cambridge, MA: Harvard University Press. Kevles, D. J., & Hood, L. E. (1993). The code of codes: Scientific and social issues in the human genome project. Cambridge, MA: Harvard University Press.
20.
Zurück zum Zitat Collins, F. S., Morgan, M., & Patrinos, A. (2003). The human genome project: Lessons from large-scale biology. Science, 300(5617), 286–290.CrossRef Collins, F. S., Morgan, M., & Patrinos, A. (2003). The human genome project: Lessons from large-scale biology. Science, 300(5617), 286–290.CrossRef
21.
Zurück zum Zitat Watson, J. D. (1990). The human genome project: Past, present, and future. Science, 248(4951), 44–49.CrossRef Watson, J. D. (1990). The human genome project: Past, present, and future. Science, 248(4951), 44–49.CrossRef
22.
Zurück zum Zitat Bentley, D. R. (2000). The human genome project: An overview. Medicinal Research Reviews, 20(3), 189–196.CrossRef Bentley, D. R. (2000). The human genome project: An overview. Medicinal Research Reviews, 20(3), 189–196.CrossRef
23.
Zurück zum Zitat Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., et al. (2001). The sequence of the human genome. Science, 291(5507), 1304–1351.CrossRef Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., et al. (2001). The sequence of the human genome. Science, 291(5507), 1304–1351.CrossRef
24.
Zurück zum Zitat Markram, H., Meier, K., Lippert, T., Grillner, S., Frackowiak, R., Dehaene, S., Knoll, A., Sompolinsky, H., Verstreken, K., DeFelipe, J., et al. (2011). Introducing the human brain project. Procedia Computer Science, 7, 39–42.CrossRef Markram, H., Meier, K., Lippert, T., Grillner, S., Frackowiak, R., Dehaene, S., Knoll, A., Sompolinsky, H., Verstreken, K., DeFelipe, J., et al. (2011). Introducing the human brain project. Procedia Computer Science, 7, 39–42.CrossRef
25.
Zurück zum Zitat Alivisatos, A. P., Chun, M., Church, G. M., Deisseroth, K., Donoghue, J. P., Greenspan, R. J., McEuen, P. L., Roukes, M. L., Sejnowski, T. J., Weiss, P. S., et al. (2013). The brain activity map. Science, 339(6125), 1284–1285.CrossRef Alivisatos, A. P., Chun, M., Church, G. M., Deisseroth, K., Donoghue, J. P., Greenspan, R. J., McEuen, P. L., Roukes, M. L., Sejnowski, T. J., Weiss, P. S., et al. (2013). The brain activity map. Science, 339(6125), 1284–1285.CrossRef
26.
Zurück zum Zitat Insel, T. R., Landis, S. C., & Collins, F. S. (2013). The NIH brain initiative. Science, 340(6133), 687–688.CrossRef Insel, T. R., Landis, S. C., & Collins, F. S. (2013). The NIH brain initiative. Science, 340(6133), 687–688.CrossRef
27.
Zurück zum Zitat Collins, F. S., & Varmus, H. (2015). A new initiative on precision medicine. New England Journal of Medicine, 372(9), 793–795.CrossRef Collins, F. S., & Varmus, H. (2015). A new initiative on precision medicine. New England Journal of Medicine, 372(9), 793–795.CrossRef
28.
Zurück zum Zitat Wagner, V., Dullaart, A., Bock, A.-K., & Zweck, A. (2006). The emerging nanomedicine landscape. Nature Biotechnology, 24(10), 1211–1217.CrossRef Wagner, V., Dullaart, A., Bock, A.-K., & Zweck, A. (2006). The emerging nanomedicine landscape. Nature Biotechnology, 24(10), 1211–1217.CrossRef
29.
Zurück zum Zitat Roco, M. C. (2003). Nanotechnology: Convergence with modern biology and medicine. Current Opinion in Biotechnology, 14(3), 337–346.CrossRef Roco, M. C. (2003). Nanotechnology: Convergence with modern biology and medicine. Current Opinion in Biotechnology, 14(3), 337–346.CrossRef
30.
Zurück zum Zitat Evans, W. E., & Relling, M. V. (2004). Moving towards individualized medicine with pharmacogenomics. Nature, 429(6990), 464–468.CrossRef Evans, W. E., & Relling, M. V. (2004). Moving towards individualized medicine with pharmacogenomics. Nature, 429(6990), 464–468.CrossRef
31.
Zurück zum Zitat McLeod, H. L., & Evans, W. E. (2001). Pharmacogenomics: Unlocking the human genome for better drug therapy. Annual Review of Pharmacology and Toxicology, 41(1), 101–121.CrossRef McLeod, H. L., & Evans, W. E. (2001). Pharmacogenomics: Unlocking the human genome for better drug therapy. Annual Review of Pharmacology and Toxicology, 41(1), 101–121.CrossRef
32.
Zurück zum Zitat Vidal, M., Chan, D. W., Gerstein, M., Mann, M., Omenn, G. S., Tagle, D., & Sechi, S. (2012). The human proteome–A scientific opportunity for transforming diagnostics, therapeutics, and healthcare. Clinical Proteomics, 9(1), 1.CrossRef Vidal, M., Chan, D. W., Gerstein, M., Mann, M., Omenn, G. S., Tagle, D., & Sechi, S. (2012). The human proteome–A scientific opportunity for transforming diagnostics, therapeutics, and healthcare. Clinical Proteomics, 9(1), 1.CrossRef
33.
Zurück zum Zitat Weston, A. D., & Hood, L. (2004). Systems biology, proteomics, and the future of health care: Toward predictive, preventative, and personalized medicine. Journal of Proteome Research, 3(2), 179–196.CrossRef Weston, A. D., & Hood, L. (2004). Systems biology, proteomics, and the future of health care: Toward predictive, preventative, and personalized medicine. Journal of Proteome Research, 3(2), 179–196.CrossRef
34.
Zurück zum Zitat Butte, A. J. (2008). Translational bioinformatics: Coming of age. Journal of the American Medical Informatics Association, 15(6), 709–714.CrossRef Butte, A. J. (2008). Translational bioinformatics: Coming of age. Journal of the American Medical Informatics Association, 15(6), 709–714.CrossRef
35.
Zurück zum Zitat Shah, N. H., & Tenenbaum, J. D. (2012). The coming age of data-driven medicine: Translational bioinformatics’ next frontier. Journal of the American Medical Informatics Association, 19(e1), e2–e4.CrossRef Shah, N. H., & Tenenbaum, J. D. (2012). The coming age of data-driven medicine: Translational bioinformatics’ next frontier. Journal of the American Medical Informatics Association, 19(e1), e2–e4.CrossRef
36.
Zurück zum Zitat Yan, Q. (2010). Translational bioinformatics and systems biology approaches for personalized medicine. In Systems biology in drug discovery and development: Methods and protocols (pp. 167–178). New York: Humana Press. Yan, Q. (2010). Translational bioinformatics and systems biology approaches for personalized medicine. In Systems biology in drug discovery and development: Methods and protocols (pp. 167–178). New York: Humana Press.
37.
Zurück zum Zitat Feng, J. (2003). Computational neuroscience: A comprehensive approach. Boca Raton: CRC press.MATHCrossRef Feng, J. (2003). Computational neuroscience: A comprehensive approach. Boca Raton: CRC press.MATHCrossRef
38.
Zurück zum Zitat Baraba´si, A.-L., Gulbahce, N., & Loscalzo, J. (2011). Network medicine: A network-based approach to human disease. Nature Reviews Genetics, 12(1), 56–68.CrossRef Baraba´si, A.-L., Gulbahce, N., & Loscalzo, J. (2011). Network medicine: A network-based approach to human disease. Nature Reviews Genetics, 12(1), 56–68.CrossRef
39.
Zurück zum Zitat Chen, C., Dubin, R., & Kim, M. C. (2014). Emerging trends and new developments in regenerative medicine: A scientometric update (2000–2014). Expert Opinion on Biological Therapy, 14(9), 1295–1317.CrossRef Chen, C., Dubin, R., & Kim, M. C. (2014). Emerging trends and new developments in regenerative medicine: A scientometric update (2000–2014). Expert Opinion on Biological Therapy, 14(9), 1295–1317.CrossRef
40.
Zurück zum Zitat Tanaka, H. (2010). Omics-based medicine and systems pathology. Methods of Information in Medicine, 49(2), 173–185.CrossRef Tanaka, H. (2010). Omics-based medicine and systems pathology. Methods of Information in Medicine, 49(2), 173–185.CrossRef
41.
Zurück zum Zitat Garay, J. P., & Gray, J. W. (2012). Omics and therapy–A basis for precision medicine. Molecular Oncology, 6(2), 128–139.CrossRef Garay, J. P., & Gray, J. W. (2012). Omics and therapy–A basis for precision medicine. Molecular Oncology, 6(2), 128–139.CrossRef
42.
Zurück zum Zitat Hamburg, M. A., & Collins, F. S. (2010). The path to personalized medicine. New England Journal of Medicine, 363(4), 301–304.CrossRef Hamburg, M. A., & Collins, F. S. (2010). The path to personalized medicine. New England Journal of Medicine, 363(4), 301–304.CrossRef
43.
Zurück zum Zitat Cuijpers, P., et al. (2009). Prevention: An achievable goal in personalized medicine. Dialogues Clin Neurosci, 11(4), 447–454. Cuijpers, P., et al. (2009). Prevention: An achievable goal in personalized medicine. Dialogues Clin Neurosci, 11(4), 447–454.
44.
Zurück zum Zitat Harvey, A., Brand, A., Holgate, S. T., Kristiansen, L. V., Lehrach, H., Palotie, A., & Prainsack, B. (2012). The future of technologies for personalised medicine. New Biotechnology, 29(6), 625–633.CrossRef Harvey, A., Brand, A., Holgate, S. T., Kristiansen, L. V., Lehrach, H., Palotie, A., & Prainsack, B. (2012). The future of technologies for personalised medicine. New Biotechnology, 29(6), 625–633.CrossRef
45.
Zurück zum Zitat Dietel, M., & Sers, C. (2006). Personalized medicine and development of targeted therapies: The upcoming challenge for diagnostic molecular pathology. A review. Virchows Archiv, 448(6), 744–755.CrossRef Dietel, M., & Sers, C. (2006). Personalized medicine and development of targeted therapies: The upcoming challenge for diagnostic molecular pathology. A review. Virchows Archiv, 448(6), 744–755.CrossRef
46.
Zurück zum Zitat Jain, K. K. (2005). Personalised medicine for cancer: From drug development into clinical practice. Expert Opinion on Pharmacotherapy, 6, 1463–1476.CrossRef Jain, K. K. (2005). Personalised medicine for cancer: From drug development into clinical practice. Expert Opinion on Pharmacotherapy, 6, 1463–1476.CrossRef
47.
Zurück zum Zitat Jain, K. (2002). Personalized medicine. Current Opinion in Molecular Therapeutics, 4(6), 548–558. Jain, K. (2002). Personalized medicine. Current Opinion in Molecular Therapeutics, 4(6), 548–558.
48.
Zurück zum Zitat Kalow, W. (2002). Pharmacogenetics and personalised medicine. Fundamental & Clinical Pharmacology, 16(5), 337–342.CrossRef Kalow, W. (2002). Pharmacogenetics and personalised medicine. Fundamental & Clinical Pharmacology, 16(5), 337–342.CrossRef
49.
Zurück zum Zitat Mirnezami, R., Nicholson, J., & Darzi, A. (2012). Preparing for precision medicine. New England Journal of Medicine, 366(6), 489–491.CrossRef Mirnezami, R., Nicholson, J., & Darzi, A. (2012). Preparing for precision medicine. New England Journal of Medicine, 366(6), 489–491.CrossRef
50.
Zurück zum Zitat Ziegler, A., Koch, A., Krockenberger, K., & Großhennig, A. (2012). Personalized medicine using DNA biomarkers: A review. Human Genetics, 131(10), 1627–1638.CrossRef Ziegler, A., Koch, A., Krockenberger, K., & Großhennig, A. (2012). Personalized medicine using DNA biomarkers: A review. Human Genetics, 131(10), 1627–1638.CrossRef
51.
Zurück zum Zitat Flores, M., Glusman, G., Brogaard, K., Price, N. D., & Hood, L. (2013). P4 medicine: How systems medicine will transform the healthcare sector and society. Personalized Medicine, 10(6), 565–576.CrossRef Flores, M., Glusman, G., Brogaard, K., Price, N. D., & Hood, L. (2013). P4 medicine: How systems medicine will transform the healthcare sector and society. Personalized Medicine, 10(6), 565–576.CrossRef
52.
Zurück zum Zitat Hood, L., & Galas, D. J. (2009). Systems biology and emerging technologies will catalyze the transition from reactive medicine to predictive, personalized, preventive and participatory (P4) medicine. Interdisciplinary Bio Central, 1(1), 6.CrossRef Hood, L., & Galas, D. J. (2009). Systems biology and emerging technologies will catalyze the transition from reactive medicine to predictive, personalized, preventive and participatory (P4) medicine. Interdisciplinary Bio Central, 1(1), 6.CrossRef
53.
Zurück zum Zitat Hood, L., & Flores, M. (2012). A personal view on systems medicine and the emergence of proactive P4 medicine: Predictive, preventive, personalized and participatory. New Biotechnology, 29(6), 613–624.CrossRef Hood, L., & Flores, M. (2012). A personal view on systems medicine and the emergence of proactive P4 medicine: Predictive, preventive, personalized and participatory. New Biotechnology, 29(6), 613–624.CrossRef
54.
Zurück zum Zitat Hood, L., & Friend, S. H. (2011). Predictive, personalized, preventive, participatory (P4) cancer medicine. Nature Reviews Clinical Oncology, 8(3), 184–187.CrossRef Hood, L., & Friend, S. H. (2011). Predictive, personalized, preventive, participatory (P4) cancer medicine. Nature Reviews Clinical Oncology, 8(3), 184–187.CrossRef
55.
Zurück zum Zitat Ahn, A. C., Tewari, M., Poon, C.-S., & Phillips, R. S. (2006). The limits of reductionism in medicine: Could systems biology offer an alternative? PLoS Medicine, 3(6), e208.CrossRef Ahn, A. C., Tewari, M., Poon, C.-S., & Phillips, R. S. (2006). The limits of reductionism in medicine: Could systems biology offer an alternative? PLoS Medicine, 3(6), e208.CrossRef
56.
Zurück zum Zitat Auffray, C., Chen, Z., & Hood, L. (2009). Systems medicine: The future of medical genomics and healthcare. Genome Medicine, 1(1), 2.CrossRef Auffray, C., Chen, Z., & Hood, L. (2009). Systems medicine: The future of medical genomics and healthcare. Genome Medicine, 1(1), 2.CrossRef
57.
Zurück zum Zitat Martin-Sanchez, F., Iakovidis, I., Nørager, S., Maojo, V., de Groen, P., Van der Lei, J., Jones, T., Abraham-Fuchs, K., Apweiler, R., Babic, A., et al. (2004). Synergy between medical informatics and bioinformatics: Facilitating genomic medicine for future health care. Journal of Biomedical Informatics, 37(1), 30–42.CrossRef Martin-Sanchez, F., Iakovidis, I., Nørager, S., Maojo, V., de Groen, P., Van der Lei, J., Jones, T., Abraham-Fuchs, K., Apweiler, R., Babic, A., et al. (2004). Synergy between medical informatics and bioinformatics: Facilitating genomic medicine for future health care. Journal of Biomedical Informatics, 37(1), 30–42.CrossRef
58.
Zurück zum Zitat Miller, P. L. (2000). Opportunities at the intersection of bioinformatics and health informatics. Journal of the American Medical Informatics Association, 7(5), 431–438.CrossRef Miller, P. L. (2000). Opportunities at the intersection of bioinformatics and health informatics. Journal of the American Medical Informatics Association, 7(5), 431–438.CrossRef
59.
Zurück zum Zitat Hood, L., Balling, R., & Auffray, C. (2012). Revolutionizing medicine in the 21st century through systems approaches. Biotechnology Journal, 7(8), 992–1001.CrossRef Hood, L., Balling, R., & Auffray, C. (2012). Revolutionizing medicine in the 21st century through systems approaches. Biotechnology Journal, 7(8), 992–1001.CrossRef
60.
Zurück zum Zitat Hood, L., Heath, J. R., Phelps, M. E., & Lin, B. (2004). Systems biology and new technologies enable predictive and preventative medicine. Science, 306(5696), 640–643.CrossRef Hood, L., Heath, J. R., Phelps, M. E., & Lin, B. (2004). Systems biology and new technologies enable predictive and preventative medicine. Science, 306(5696), 640–643.CrossRef
61.
Zurück zum Zitat Loscalzo, J., & Barabasi, A.-L. (2011). Systems biology and the future of medicine. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 3(6), 619–627. Loscalzo, J., & Barabasi, A.-L. (2011). Systems biology and the future of medicine. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 3(6), 619–627.
62.
Zurück zum Zitat Vidal, M., Cusick, M. E., & Barabasi, A.-L. (2011). Interactome networks and human disease. Cell, 144(6), 986–998.CrossRef Vidal, M., Cusick, M. E., & Barabasi, A.-L. (2011). Interactome networks and human disease. Cell, 144(6), 986–998.CrossRef
63.
Zurück zum Zitat Noble, D. (2002). The rise of computational biology. Nature Reviews Molecular Cell Biology, 3(6), 459–463.CrossRef Noble, D. (2002). The rise of computational biology. Nature Reviews Molecular Cell Biology, 3(6), 459–463.CrossRef
64.
Zurück zum Zitat Kholodenko, B., Yaffe, M. B., & Kolch, W. (2012). Computational approaches for analyzing information flow in biological networks. Science Signaling, 5, 2002961.CrossRef Kholodenko, B., Yaffe, M. B., & Kolch, W. (2012). Computational approaches for analyzing information flow in biological networks. Science Signaling, 5, 2002961.CrossRef
65.
Zurück zum Zitat Issa, N. T., Byers, S. W., & Dakshanamurthy, S. (2014). Big data: The next frontier for innovation in therapeutics and healthcare. Expert Review of Clinical Pharmacology, 7(3), 293–298.CrossRef Issa, N. T., Byers, S. W., & Dakshanamurthy, S. (2014). Big data: The next frontier for innovation in therapeutics and healthcare. Expert Review of Clinical Pharmacology, 7(3), 293–298.CrossRef
66.
Zurück zum Zitat Ohno-Machado, L. (2012). Big science, big data, and a big role for biomedical informatics. Journal of the American Medical Informatics Association: JAMIA, 19(e1), e1.CrossRef Ohno-Machado, L. (2012). Big science, big data, and a big role for biomedical informatics. Journal of the American Medical Informatics Association: JAMIA, 19(e1), e1.CrossRef
67.
Zurück zum Zitat Martin-Sanchez, F., Verspoor, K., et al. (2014). Big data in medicine is driving big changes. Yearbook of Medical Informatics, 9(1), 14–20.CrossRef Martin-Sanchez, F., Verspoor, K., et al. (2014). Big data in medicine is driving big changes. Yearbook of Medical Informatics, 9(1), 14–20.CrossRef
68.
Zurück zum Zitat Cattell, J., Chilukuri, S., & Levy, M. (2013). How big data can revolutionize pharmaceutical R&D. New York: McKinsey & Company. Cattell, J., Chilukuri, S., & Levy, M. (2013). How big data can revolutionize pharmaceutical R&D. New York: McKinsey & Company.
69.
Zurück zum Zitat Sejnowski, T. J., Churchland, P. S., & Movshon, J. A. (2014). Putting big data to good use in neuroscience. Nature Neuroscience, 17(11), 1440–1441.CrossRef Sejnowski, T. J., Churchland, P. S., & Movshon, J. A. (2014). Putting big data to good use in neuroscience. Nature Neuroscience, 17(11), 1440–1441.CrossRef
70.
Zurück zum Zitat Andreu-Perez, J., Poon, C. C., Merrifield, R. D., Wong, S. T., & Yang, G.-Z. (2015). Big data for health. IEEE Journal of Biomedical and Health Informatics, 19(4), 1193–1208.CrossRef Andreu-Perez, J., Poon, C. C., Merrifield, R. D., Wong, S. T., & Yang, G.-Z. (2015). Big data for health. IEEE Journal of Biomedical and Health Informatics, 19(4), 1193–1208.CrossRef
71.
Zurück zum Zitat Costa, F. F. (2014). Big data in biomedicine. Drug Discovery Today, 19(4), 433–440.CrossRef Costa, F. F. (2014). Big data in biomedicine. Drug Discovery Today, 19(4), 433–440.CrossRef
72.
Zurück zum Zitat Chaussabel, D., & Pulendran, B. (2015). A vision and a prescription for big data-enabled medicine. Nature Immunology, 16(5), 435–439.CrossRef Chaussabel, D., & Pulendran, B. (2015). A vision and a prescription for big data-enabled medicine. Nature Immunology, 16(5), 435–439.CrossRef
73.
Zurück zum Zitat Slaymaker, M., Power, D., Russell, D., Wilson, G., & Simpson, A. (2008). Accessing and aggregating legacy data sources for healthcare research, delivery and training. In Proceedings of the 2008 ACM Symposium on Applied Computing (pp. 1317–1324). ACM. Slaymaker, M., Power, D., Russell, D., Wilson, G., & Simpson, A. (2008). Accessing and aggregating legacy data sources for healthcare research, delivery and training. In Proceedings of the 2008 ACM Symposium on Applied Computing (pp. 1317–1324). ACM.
74.
Zurück zum Zitat Patel, V. L., Shortliffe, E. H., Stefanelli, M., Szolovits, P., Berthold, M. R., Bellazzi, R., & Abu-Hanna, A. (2009). The coming of age of artificial intelligence in medicine. Artificial Intelligence in Medicine, 46(1), 5–17.CrossRef Patel, V. L., Shortliffe, E. H., Stefanelli, M., Szolovits, P., Berthold, M. R., Bellazzi, R., & Abu-Hanna, A. (2009). The coming of age of artificial intelligence in medicine. Artificial Intelligence in Medicine, 46(1), 5–17.CrossRef
75.
Zurück zum Zitat Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997). Human domination of Earth’s ecosystems. Science, 277(5325), 494–499.CrossRef Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997). Human domination of Earth’s ecosystems. Science, 277(5325), 494–499.CrossRef
76.
Zurück zum Zitat Good, I. J. (1965). Speculations concerning the first ultraintelligent machine. Advances in Computers, 6(99), 31–83. Good, I. J. (1965). Speculations concerning the first ultraintelligent machine. Advances in Computers, 6(99), 31–83.
77.
Zurück zum Zitat Goertzel, B. (2007). Human-level artificial general intelligence and the possibility of a technological singularity: A reaction to Ray Kurzweil’s The Singularity Is Near, and McDermott’s critique of Kurzweil. Artificial Intelligence, 171(18), 1161–1173.CrossRef Goertzel, B. (2007). Human-level artificial general intelligence and the possibility of a technological singularity: A reaction to Ray Kurzweil’s The Singularity Is Near, and McDermott’s critique of Kurzweil. Artificial Intelligence, 171(18), 1161–1173.CrossRef
78.
Zurück zum Zitat Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford: Oxford University Press. Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford: Oxford University Press.
79.
Zurück zum Zitat Kurzweil, R. (2000). The age of spiritual machines: When computers exceed human intelligence. New York: Penguin. Kurzweil, R. (2000). The age of spiritual machines: When computers exceed human intelligence. New York: Penguin.
80.
Zurück zum Zitat Steels, L. (1996). “The origins of intelligence”. Steels, L. (1996). “The origins of intelligence”.
81.
Zurück zum Zitat Legg, S., Hutter, M., et al. (2007). A collection of definitions of intelligence. Frontiers in Artificial Intelligence and applications, 157, 17. Legg, S., Hutter, M., et al. (2007). A collection of definitions of intelligence. Frontiers in Artificial Intelligence and applications, 157, 17.
82.
Zurück zum Zitat Legg, S., & Hutter, M. (2007). Universal intelligence: A definition of machine intelligence. Minds and Machines, 17(4), 391–444.CrossRef Legg, S., & Hutter, M. (2007). Universal intelligence: A definition of machine intelligence. Minds and Machines, 17(4), 391–444.CrossRef
83.
Zurück zum Zitat Legg, S., & Hutter, M. (2006). A formal measure of machine intelligence. arXiv preprint cs/0605024. Legg, S., & Hutter, M. (2006). A formal measure of machine intelligence. arXiv preprint cs/0605024.
84.
Zurück zum Zitat Mahoney, M. V. (1999). Text compression as a test for artificial intelligence. In AAAI/IAAI (p. 970), AAAI Press. Mahoney, M. V. (1999). Text compression as a test for artificial intelligence. In AAAI/IAAI (p. 970), AAAI Press.
85.
86.
Zurück zum Zitat Yonck, R. (2012). Toward a standard metric of machine intelligence. World Future Review, 4(2), 61–70.CrossRef Yonck, R. (2012). Toward a standard metric of machine intelligence. World Future Review, 4(2), 61–70.CrossRef
88.
Zurück zum Zitat Whitby, B. (1996). Why the turing test is ai’s biggest blind alley. In Machines and thoughts (pp. 53–62). Oxford: Clarendon Press. Whitby, B. (1996). Why the turing test is ai’s biggest blind alley. In Machines and thoughts (pp. 53–62). Oxford: Clarendon Press.
89.
Zurück zum Zitat Hayes, P., & Ford, K. (1995). Turing test considered harmful. In IJCAI, 1, 972–977. Hayes, P., & Ford, K. (1995). Turing test considered harmful. In IJCAI, 1, 972–977.
90.
Zurück zum Zitat Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3(03), 417–424.CrossRef Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3(03), 417–424.CrossRef
91.
Zurück zum Zitat Bringsjord, S., Bello, P., & Ferrucci, D. (2003). Creativity, the Turing test, and the (better) Lovelace test. In The Turing test (pp. 215–239). Dordrecht: Springer. Bringsjord, S., Bello, P., & Ferrucci, D. (2003). Creativity, the Turing test, and the (better) Lovelace test. In The Turing test (pp. 215–239). Dordrecht: Springer.
92.
Zurück zum Zitat Krause, J., Ruxton, G. D., & Krause, S. (2010). Swarm intelligence in animals and humans. Trends in Ecology & Evolution, 25(1), 28–34.CrossRef Krause, J., Ruxton, G. D., & Krause, S. (2010). Swarm intelligence in animals and humans. Trends in Ecology & Evolution, 25(1), 28–34.CrossRef
93.
Zurück zum Zitat Park, H.-J., Kim, B. K., & Lim, K. Y. (2001). Measuring the machine intelligence quotient (MIQ) of human-machine cooperative systems. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and humans, 31(2), 89–96.CrossRef Park, H.-J., Kim, B. K., & Lim, K. Y. (2001). Measuring the machine intelligence quotient (MIQ) of human-machine cooperative systems. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and humans, 31(2), 89–96.CrossRef
94.
Zurück zum Zitat Parpinelli, R. S., & Lopes, H. S. (2011). New inspirations in swarm intelligence: A survey. International Journal of Bio-Inspired Computation, 3(1), 1–16.CrossRef Parpinelli, R. S., & Lopes, H. S. (2011). New inspirations in swarm intelligence: A survey. International Journal of Bio-Inspired Computation, 3(1), 1–16.CrossRef
95.
Zurück zum Zitat Franks, N. R., Pratt, S. C., Mallon, E. B., Britton, N. F., & Sumpter, D. J. (2002). Information flow, opinion polling and collective intelligence in house– Hunting social insects. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 357(1427), 1567–1583.CrossRef Franks, N. R., Pratt, S. C., Mallon, E. B., Britton, N. F., & Sumpter, D. J. (2002). Information flow, opinion polling and collective intelligence in house– Hunting social insects. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 357(1427), 1567–1583.CrossRef
96.
Zurück zum Zitat Tereshko, V., & Loengarov, A. (2005). Collective decision making in honeybee foraging dynamics. Computing and Information Systems, 9(3), 1. Tereshko, V., & Loengarov, A. (2005). Collective decision making in honeybee foraging dynamics. Computing and Information Systems, 9(3), 1.
97.
Zurück zum Zitat Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence. Oxford: Oxford University Press.MATH Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence. Oxford: Oxford University Press.MATH
98.
Zurück zum Zitat Nakagaki, T., Yamada, H., & T´oth, A. (2000). Intelligence: Maze-solving´ by an amoeboid organism. Nature, 407(6803), 470–470.CrossRef Nakagaki, T., Yamada, H., & T´oth, A. (2000). Intelligence: Maze-solving´ by an amoeboid organism. Nature, 407(6803), 470–470.CrossRef
99.
Zurück zum Zitat Adamatzky, A., Armstrong, R., Jones, J., & Gunji, Y.-P. (2013). On creativity of slime mould. International Journal of General Systems, 42(5), 441–457.MATHCrossRef Adamatzky, A., Armstrong, R., Jones, J., & Gunji, Y.-P. (2013). On creativity of slime mould. International Journal of General Systems, 42(5), 441–457.MATHCrossRef
100.
Zurück zum Zitat Trewavas, A. (2005). Plant intelligence. Naturwissenschaften, 92(9), 401–413.CrossRef Trewavas, A. (2005). Plant intelligence. Naturwissenschaften, 92(9), 401–413.CrossRef
101.
Zurück zum Zitat Trewavas, A. (2005). Green plants as intelligent organisms. Trends in Plant Science, 10(9), 413–419.CrossRef Trewavas, A. (2005). Green plants as intelligent organisms. Trends in Plant Science, 10(9), 413–419.CrossRef
102.
Zurück zum Zitat Bishop, C. M. (1994). Neural networks and their applications. Review of Scientific Instruments, 65(6), 1803–1832.CrossRef Bishop, C. M. (1994). Neural networks and their applications. Review of Scientific Instruments, 65(6), 1803–1832.CrossRef
103.
Zurück zum Zitat Simon, H. A. (1957). Models of man; social and rational. New York: Wiley.MATH Simon, H. A. (1957). Models of man; social and rational. New York: Wiley.MATH
104.
Zurück zum Zitat Klingberg, T. (2000). Limitations in information processing in the human brain: Neuroimaging of dual task performance and working memory tasks. Progress in Brain Research, 126, 95–102.CrossRef Klingberg, T. (2000). Limitations in information processing in the human brain: Neuroimaging of dual task performance and working memory tasks. Progress in Brain Research, 126, 95–102.CrossRef
105.
Zurück zum Zitat Domingos, P. (2015). The master algorithm: How the quest for the ultimate learning machine will remake our world. New York: Basic Books. Domingos, P. (2015). The master algorithm: How the quest for the ultimate learning machine will remake our world. New York: Basic Books.
106.
Zurück zum Zitat Newell, A., & Simon, H. A. (1976). Computer science as empirical inquiry: Symbols and search. Communications of the ACM, 19(3), 113–126.CrossRefMathSciNet Newell, A., & Simon, H. A. (1976). Computer science as empirical inquiry: Symbols and search. Communications of the ACM, 19(3), 113–126.CrossRefMathSciNet
107.
Zurück zum Zitat Back, T., Hammel, U., & Schwefel, H.-P. (1997). Evolutionary computation: Comments on the history and current state. IEEE Transactions on Evolutionary Computation, 1(1), 3–17.CrossRef Back, T., Hammel, U., & Schwefel, H.-P. (1997). Evolutionary computation: Comments on the history and current state. IEEE Transactions on Evolutionary Computation, 1(1), 3–17.CrossRef
108.
Zurück zum Zitat Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.MATH Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.MATH
109.
Zurück zum Zitat Vapnik, V. N. (1999). An overview of statistical learning theory. Neural Networks, IEEE Transactions on, 10(5), 988–999.CrossRef Vapnik, V. N. (1999). An overview of statistical learning theory. Neural Networks, IEEE Transactions on, 10(5), 988–999.CrossRef
110.
Zurück zum Zitat Vapnik, V. (1995). The nature of statistical learning theory. Data Mining and Knowledge Discovery, 6, 1–47.MATH Vapnik, V. (1995). The nature of statistical learning theory. Data Mining and Knowledge Discovery, 6, 1–47.MATH
111.
Zurück zum Zitat Bayes, M., & Price, M. (1763). An essay towards solving a problem in the doctrine of chances. by the late rev. mr. bayes, frs communicated by mr. price, in a letter to john canton, amfrs. Philosophical Transactions (1683–1775), 53, 370–418. Bayes, M., & Price, M. (1763). An essay towards solving a problem in the doctrine of chances. by the late rev. mr. bayes, frs communicated by mr. price, in a letter to john canton, amfrs. Philosophical Transactions (1683–1775), 53, 370–418.
112.
Zurück zum Zitat Barber, D. (2012). Bayesian reasoning and machine learning. Cambridge University Press. Barber, D. (2012). Bayesian reasoning and machine learning. Cambridge University Press.
113.
Zurück zum Zitat Cios, K. J., & Moore, G. W. (2002). Uniqueness of medical data mining. Artificial Intelligence in Medicine, 26(1), 1–24.CrossRef Cios, K. J., & Moore, G. W. (2002). Uniqueness of medical data mining. Artificial Intelligence in Medicine, 26(1), 1–24.CrossRef
114.
Zurück zum Zitat Papik, K., Molnar, B., Schaefer, R., Dombovari, Z., Tulassay, Z., & Feher, J. (1998). Application of neural networks in medicine – A review. Medical Science Monitor, 4(3), MT538–MT546. Papik, K., Molnar, B., Schaefer, R., Dombovari, Z., Tulassay, Z., & Feher, J. (1998). Application of neural networks in medicine – A review. Medical Science Monitor, 4(3), MT538–MT546.
115.
Zurück zum Zitat Subasi, A. (2006). Automatic detection of epileptic seizure using dynamic fuzzy neural networks. Expert Systems with Applications, 31(2), 320–328.CrossRefMathSciNet Subasi, A. (2006). Automatic detection of epileptic seizure using dynamic fuzzy neural networks. Expert Systems with Applications, 31(2), 320–328.CrossRefMathSciNet
116.
Zurück zum Zitat Kim, J., Shin, H. S., Shin, K., & Lee, M. (2009). Robust algorithm for arrhythmia classification in ECG using extreme learning machine. Biomedical Engineering Online, 8(1), 1.CrossRef Kim, J., Shin, H. S., Shin, K., & Lee, M. (2009). Robust algorithm for arrhythmia classification in ECG using extreme learning machine. Biomedical Engineering Online, 8(1), 1.CrossRef
117.
Zurück zum Zitat Wajid, S. K., Hussain, A., & Luo, B. (2014). An efficient computer aided decision support system for breast cancer diagnosis using echo state network classifier. In Computational Intelligence in Healthcare and e-health (CICARE), 2014 IEEE Symposium on (pp. 17–24). IEEE. Wajid, S. K., Hussain, A., & Luo, B. (2014). An efficient computer aided decision support system for breast cancer diagnosis using echo state network classifier. In Computational Intelligence in Healthcare and e-health (CICARE), 2014 IEEE Symposium on (pp. 17–24). IEEE.
118.
Zurück zum Zitat Cheng, K.-S., Lin, J.-S., & Mao, C.-W. (1996). The application of competitive Hopfield neural network to medical image segmentation. IEEE Transactions on Medical Imaging, 15(4), 560–567.CrossRef Cheng, K.-S., Lin, J.-S., & Mao, C.-W. (1996). The application of competitive Hopfield neural network to medical image segmentation. IEEE Transactions on Medical Imaging, 15(4), 560–567.CrossRef
119.
Zurück zum Zitat Roth, H. R., Yao, J., Lu, L., Stieger, J., Burns, J. E., & Summers, R. M. (2015). Detection of sclerotic spine metastases via random aggregation of deep convolutional neural network classifications. In Recent advances in computational methods and clinical applications for spine imaging (pp. 3–12). Cham: Springer. Roth, H. R., Yao, J., Lu, L., Stieger, J., Burns, J. E., & Summers, R. M. (2015). Detection of sclerotic spine metastases via random aggregation of deep convolutional neural network classifications. In Recent advances in computational methods and clinical applications for spine imaging (pp. 3–12). Cham: Springer.
120.
Zurück zum Zitat Hammerla, N. Y., Fisher, J., Andras, P., Rochester, L., Walker, R., & Plo¨tz, T. (2015). PD disease state assessment in naturalistic environments using deep learning. In AAAI (pp. 1742–1748). Hammerla, N. Y., Fisher, J., Andras, P., Rochester, L., Walker, R., & Plo¨tz, T. (2015). PD disease state assessment in naturalistic environments using deep learning. In AAAI (pp. 1742–1748).
121.
Zurück zum Zitat Akay, M. F. (2009). Support vector machines combined with feature selection for breast cancer diagnosis. Expert Systems with Applications, 36(2), 3240–3247.CrossRef Akay, M. F. (2009). Support vector machines combined with feature selection for breast cancer diagnosis. Expert Systems with Applications, 36(2), 3240–3247.CrossRef
122.
Zurück zum Zitat Razzaghi, T., Roderick, O., Safro, I., & Marko, N. (2016). Multilevel weighted support vector machine for classification on healthcare data with missing values. PloS One, 11(5), e0155119.CrossRef Razzaghi, T., Roderick, O., Safro, I., & Marko, N. (2016). Multilevel weighted support vector machine for classification on healthcare data with missing values. PloS One, 11(5), e0155119.CrossRef
123.
Zurück zum Zitat Keller, B. M., Nathan, D. L., Wang, Y., Zheng, Y., Gee, J. C., Conant, E. F., & Kontos, D. (2012). Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation. Medical Physics, 39(8), 4903–4917.CrossRef Keller, B. M., Nathan, D. L., Wang, Y., Zheng, Y., Gee, J. C., Conant, E. F., & Kontos, D. (2012). Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation. Medical Physics, 39(8), 4903–4917.CrossRef
124.
Zurück zum Zitat Karaolis, M. A., Moutiris, J. A., Hadjipanayi, D., & Pattichis, C. S. (2010). Assessment of the risk factors of coronary heart events based on data mining with decision trees. IEEE Transactions on Information Technology in Biomedicine, 14(3), 559–566.CrossRef Karaolis, M. A., Moutiris, J. A., Hadjipanayi, D., & Pattichis, C. S. (2010). Assessment of the risk factors of coronary heart events based on data mining with decision trees. IEEE Transactions on Information Technology in Biomedicine, 14(3), 559–566.CrossRef
125.
Zurück zum Zitat Freitas, A., Costa-Pereira, A., & Brazdil, P. (2007). Cost-sensitive decision trees applied to medical data. In International Conference on Data Warehousing and Knowledge Discovery (pp. 303–312). Springer. Freitas, A., Costa-Pereira, A., & Brazdil, P. (2007). Cost-sensitive decision trees applied to medical data. In International Conference on Data Warehousing and Knowledge Discovery (pp. 303–312). Springer.
126.
Zurück zum Zitat Khan, M. U., Choi, J. P., Shin, H., & Kim, M. (2008). Predicting breast cancer survivability using fuzzy decision trees for personalized healthcare. In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 5148–5151). IEEE. Khan, M. U., Choi, J. P., Shin, H., & Kim, M. (2008). Predicting breast cancer survivability using fuzzy decision trees for personalized healthcare. In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 5148–5151). IEEE.
127.
Zurück zum Zitat Khalilia, M., Chakraborty, S., & Popescu, M. (2011). Predicting disease risks from highly imbalanced data using random forest. BMC Medical Informatics and Decision Making, 11(1), 51.CrossRef Khalilia, M., Chakraborty, S., & Popescu, M. (2011). Predicting disease risks from highly imbalanced data using random forest. BMC Medical Informatics and Decision Making, 11(1), 51.CrossRef
128.
Zurück zum Zitat Wei, W., Visweswaran, S., & Cooper, G. F. (2011). The application of naive Bayes model averaging to predict Alzheimer’s disease from genome-wide data. Journal of the American Medical Informatics Association, 18(4), 370–375.CrossRef Wei, W., Visweswaran, S., & Cooper, G. F. (2011). The application of naive Bayes model averaging to predict Alzheimer’s disease from genome-wide data. Journal of the American Medical Informatics Association, 18(4), 370–375.CrossRef
129.
Zurück zum Zitat Gevaert, O., De Smet, F., Timmerman, D., Moreau, Y., & De Moor, B. (2006). Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics, 22(14), e184–e190.CrossRef Gevaert, O., De Smet, F., Timmerman, D., Moreau, Y., & De Moor, B. (2006). Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics, 22(14), e184–e190.CrossRef
130.
Zurück zum Zitat Shouman, M., Turner, T., & Stocker, R. (2012). Applying k-nearest neighbour in diagnosing heart disease patients. International Journal of Information and Education Technology, 2(3), 220.CrossRef Shouman, M., Turner, T., & Stocker, R. (2012). Applying k-nearest neighbour in diagnosing heart disease patients. International Journal of Information and Education Technology, 2(3), 220.CrossRef
131.
Zurück zum Zitat Hayat, M., & Khan, A. (2012). Discriminating outer membrane proteins with fuzzy K-nearest neighbor algorithms based on the general form of Chou’s PseAAC. Protein and Peptide Letters, 19(4), 411–421.CrossRef Hayat, M., & Khan, A. (2012). Discriminating outer membrane proteins with fuzzy K-nearest neighbor algorithms based on the general form of Chou’s PseAAC. Protein and Peptide Letters, 19(4), 411–421.CrossRef
132.
Zurück zum Zitat Holt, A., Bichindaritz, I., Schmidt, R., & Perner, P. (2005). Medical applications in case-based reasoning. The Knowledge Engineering Review, 20(03), 289–292.CrossRef Holt, A., Bichindaritz, I., Schmidt, R., & Perner, P. (2005). Medical applications in case-based reasoning. The Knowledge Engineering Review, 20(03), 289–292.CrossRef
133.
Zurück zum Zitat Cooper, B., & Lipsitch, M. (2004). The analysis of hospital infection data using hidden Markov models. Biostatistics, 5(2), 223–237.MATHCrossRef Cooper, B., & Lipsitch, M. (2004). The analysis of hospital infection data using hidden Markov models. Biostatistics, 5(2), 223–237.MATHCrossRef
134.
Zurück zum Zitat Thomas, E., Temko, A., Lightbody, G., Marnane, W., & Boylan, G. (2010). Gaussian mixture models for classification of neonatal seizures using EEG. Physiological Measurement, 31(7), 1047.CrossRef Thomas, E., Temko, A., Lightbody, G., Marnane, W., & Boylan, G. (2010). Gaussian mixture models for classification of neonatal seizures using EEG. Physiological Measurement, 31(7), 1047.CrossRef
135.
Zurück zum Zitat McKinney, B. A., Reif, D. M., Ritchie, M. D., & Moore, J. H. (2006). Machine learning for detecting gene-gene interactions. Applied Bioinformatics, 5(2), 77–88.CrossRef McKinney, B. A., Reif, D. M., Ritchie, M. D., & Moore, J. H. (2006). Machine learning for detecting gene-gene interactions. Applied Bioinformatics, 5(2), 77–88.CrossRef
136.
Zurück zum Zitat Polat, K., S¸ahan, S., & Gu¨ne¸s, S. (2006). A new method to medical diagnosis: Artificial immune recognition system (AIRS) with fuzzy weighted pre-processing and application to ECG arrhythmia. Expert Systems with Applications, 31(2), 264–269.CrossRef Polat, K., S¸ahan, S., & Gu¨ne¸s, S. (2006). A new method to medical diagnosis: Artificial immune recognition system (AIRS) with fuzzy weighted pre-processing and application to ECG arrhythmia. Expert Systems with Applications, 31(2), 264–269.CrossRef
137.
Zurück zum Zitat Manju, A., & Nigam, M. J. (2014). Applications of quantum inspired computational intelligence: A survey. Artificial Intelligence Review, 42(1), 79–156.CrossRef Manju, A., & Nigam, M. J. (2014). Applications of quantum inspired computational intelligence: A survey. Artificial Intelligence Review, 42(1), 79–156.CrossRef
138.
Zurück zum Zitat Vilalta, R., Giraud-Carrier, C., & Brazdil, P. (2010). Meta-learning-concepts and techniques. In Data mining and knowledge discovery handbook (pp. 717–731). New York: Springer. Vilalta, R., Giraud-Carrier, C., & Brazdil, P. (2010). Meta-learning-concepts and techniques. In Data mining and knowledge discovery handbook (pp. 717–731). New York: Springer.
139.
Zurück zum Zitat Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., & Qu, R. (2009). A survey of hyper-heuristics (Computer science technical report no. NOTTCS-TR-SUB-0906241418-2747). School of Computer Science and Information Technology, University of Nottingham. Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., & Qu, R. (2009). A survey of hyper-heuristics (Computer science technical report no. NOTTCS-TR-SUB-0906241418-2747). School of Computer Science and Information Technology, University of Nottingham.
140.
Zurück zum Zitat Gupta, S., Kulhara, P., et al. (2010). What is schizophrenia: A neurodevelopmental or neurodegenerative disorder or a combination of both? A critical analysis. Indian Journal of Psychiatry, 52(1), 21.CrossRef Gupta, S., Kulhara, P., et al. (2010). What is schizophrenia: A neurodevelopmental or neurodegenerative disorder or a combination of both? A critical analysis. Indian Journal of Psychiatry, 52(1), 21.CrossRef
141.
Zurück zum Zitat McCrone, P. R., Dhanasiri, S., Patel, A., Knapp, M., & Lawton-Smith, S. (2008). Paying the price: The cost of mental health care in England to 2026. London: King’s Fund. McCrone, P. R., Dhanasiri, S., Patel, A., Knapp, M., & Lawton-Smith, S. (2008). Paying the price: The cost of mental health care in England to 2026. London: King’s Fund.
142.
Zurück zum Zitat Whiteford, H. A., Degenhardt, L., Rehm, J., Baxter, A. J., Ferrari, A. J., Erskine, H. E., Charlson, F. J., Norman, R. E., Flaxman, A. D., Johns, N., et al. (2013). Global burden of disease attributable to mental and substance use disorders: Findings from the global burden of disease study 2010. The Lancet, 382(9904), 1575–1586.CrossRef Whiteford, H. A., Degenhardt, L., Rehm, J., Baxter, A. J., Ferrari, A. J., Erskine, H. E., Charlson, F. J., Norman, R. E., Flaxman, A. D., Johns, N., et al. (2013). Global burden of disease attributable to mental and substance use disorders: Findings from the global burden of disease study 2010. The Lancet, 382(9904), 1575–1586.CrossRef
143.
Zurück zum Zitat Tandon, R., Gaebel, W., Barch, D. M., Bustillo, J., Gur, R. E., Heckers, S., Malaspina, D., Owen, M. J., Schultz, S., Tsuang, M., et al. (2013). Definition and description of schizophrenia in the DSM-5. Schizophrenia Research, 150(1), 3–10.CrossRef Tandon, R., Gaebel, W., Barch, D. M., Bustillo, J., Gur, R. E., Heckers, S., Malaspina, D., Owen, M. J., Schultz, S., Tsuang, M., et al. (2013). Definition and description of schizophrenia in the DSM-5. Schizophrenia Research, 150(1), 3–10.CrossRef
144.
Zurück zum Zitat Gallagher, S. (2004). Neurocognitive models of schizophrenia: A neurophenomenological critique. Psychopathology, 37(1), 8–19.CrossRef Gallagher, S. (2004). Neurocognitive models of schizophrenia: A neurophenomenological critique. Psychopathology, 37(1), 8–19.CrossRef
145.
Zurück zum Zitat Craddock, N., & Owen, M. J. (2010). The Kraepelinian dichotomy–going, going... But still not gone. The British Journal of Psychiatry, 196(2), 92–95.CrossRef Craddock, N., & Owen, M. J. (2010). The Kraepelinian dichotomy–going, going... But still not gone. The British Journal of Psychiatry, 196(2), 92–95.CrossRef
146.
Zurück zum Zitat Elkis, H. (2016). Treatment-resistant schizophrenia. Psychiatric Clinics of North America, 39(2), 239–265.CrossRef Elkis, H. (2016). Treatment-resistant schizophrenia. Psychiatric Clinics of North America, 39(2), 239–265.CrossRef
147.
Zurück zum Zitat Bilder, R. M., Mukherjee, S., Rieder, R. O., & Pandurangi, A. K. (1985). Symptomatic and neuropsychological components of defect states. Schizophrenia Bulletin, 11(3), 409.CrossRef Bilder, R. M., Mukherjee, S., Rieder, R. O., & Pandurangi, A. K. (1985). Symptomatic and neuropsychological components of defect states. Schizophrenia Bulletin, 11(3), 409.CrossRef
148.
Zurück zum Zitat Warren, J. B., Lambert, W. E., Fu, R., Anderson, J. M., & Edelman, A. B. (2012). Global neonatal and perinatal mortality: A review and case study for the Loreto Province of Peru. Research and Reports in Neonatology. Dovepress, 2, 103–113.CrossRef Warren, J. B., Lambert, W. E., Fu, R., Anderson, J. M., & Edelman, A. B. (2012). Global neonatal and perinatal mortality: A review and case study for the Loreto Province of Peru. Research and Reports in Neonatology. Dovepress, 2, 103–113.CrossRef
149.
Zurück zum Zitat Brown, R., Wijekoon, J. H., Fernando, A., Johnstone, E. D., & Heazell, A. E. (2014). Continuous objective recording of fetal heart rate and fetal movements could reliably identify fetal compromise, which could reduce stillbirth rates by facilitating timely management. Medical Hypotheses, 83(3), 410–417.CrossRef Brown, R., Wijekoon, J. H., Fernando, A., Johnstone, E. D., & Heazell, A. E. (2014). Continuous objective recording of fetal heart rate and fetal movements could reliably identify fetal compromise, which could reduce stillbirth rates by facilitating timely management. Medical Hypotheses, 83(3), 410–417.CrossRef
150.
Zurück zum Zitat Rees, S., & Inder, T. (2005). Fetal and neonatal origins of altered brain development. Early Human Development, 81(9), 753–761.CrossRef Rees, S., & Inder, T. (2005). Fetal and neonatal origins of altered brain development. Early Human Development, 81(9), 753–761.CrossRef
151.
Zurück zum Zitat Rees, S., Harding, R., & Walker, D. (2008). An adverse intrauterine environment: Implications for injury and altered development of the brain. International Journal of Developmental Neuroscience, 26(1), 3–11.CrossRef Rees, S., Harding, R., & Walker, D. (2008). An adverse intrauterine environment: Implications for injury and altered development of the brain. International Journal of Developmental Neuroscience, 26(1), 3–11.CrossRef
152.
Zurück zum Zitat Ugwumadu, A. (2014). Are we (mis) guided by current guidelines on intrapartum fetal heart rate monitoring? Case for a more physiological approach to interpretation. BJOG: An International Journal of Obstetrics & Gynaecology, 121(9), 1063–1070.CrossRef Ugwumadu, A. (2014). Are we (mis) guided by current guidelines on intrapartum fetal heart rate monitoring? Case for a more physiological approach to interpretation. BJOG: An International Journal of Obstetrics & Gynaecology, 121(9), 1063–1070.CrossRef
153.
Zurück zum Zitat Pinto, P., Bernardes, J., Costa-Santos, C., Amorim-Costa, C., Silva, M., & Ayres-de Campos, D. (2014). Development and evaluation of an algorithm for computer analysis of maternal heart rate during labor. Computers in Biology and Medicine, 49, 30–35.CrossRef Pinto, P., Bernardes, J., Costa-Santos, C., Amorim-Costa, C., Silva, M., & Ayres-de Campos, D. (2014). Development and evaluation of an algorithm for computer analysis of maternal heart rate during labor. Computers in Biology and Medicine, 49, 30–35.CrossRef
154.
Zurück zum Zitat Kessler, J., Moster, D., & Albrechtsen, S. (2014). Delay in intervention increases neonatal morbidity in births monitored with cardiotocography and ST-waveform analysis. Acta Obstetricia et Gynecologica Scandinavica, 93(2), 175–181.CrossRef Kessler, J., Moster, D., & Albrechtsen, S. (2014). Delay in intervention increases neonatal morbidity in births monitored with cardiotocography and ST-waveform analysis. Acta Obstetricia et Gynecologica Scandinavica, 93(2), 175–181.CrossRef
155.
Zurück zum Zitat Chud´ǎcek, V., Spilka, J., Burˇsa, M., Jank, P., Hruban, L., Huptych, M., & Lhotska´, L. (2014). Open access intrapartum CTG database. BMC Pregnancy and Childbirth, 14(1), 1. Chud´ǎcek, V., Spilka, J., Burˇsa, M., Jank, P., Hruban, L., Huptych, M., & Lhotska´, L. (2014). Open access intrapartum CTG database. BMC Pregnancy and Childbirth, 14(1), 1.
156.
Zurück zum Zitat Kreyszig, E. (2005). Advanced engineering mathematics (9th ed.p. 816). New York: wiley. Kreyszig, E. (2005). Advanced engineering mathematics (9th ed.p. 816). New York: wiley.
157.
Zurück zum Zitat Gysels, E., Renevey, P., & Celka, P. (2005). SVM-based recursive feature elimination to compare phase synchronization computed from broadband and narrowband EEG signals in brain–computer interfaces. Signal Processing, 85(11), 2178–2189.MATHCrossRef Gysels, E., Renevey, P., & Celka, P. (2005). SVM-based recursive feature elimination to compare phase synchronization computed from broadband and narrowband EEG signals in brain–computer interfaces. Signal Processing, 85(11), 2178–2189.MATHCrossRef
158.
Zurück zum Zitat Abry, P., Roux, S. G., Chud´ǎcek, V., Borgnat, P., Gon,calves, P., & Doret, M. (2013). Hurst exponent and intrapartum fetal heart rate: Impact of decelerations. In Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems (pp. 131–136). IEEE. Abry, P., Roux, S. G., Chud´ǎcek, V., Borgnat, P., Gon,calves, P., & Doret, M. (2013). Hurst exponent and intrapartum fetal heart rate: Impact of decelerations. In Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems (pp. 131–136). IEEE.
159.
Zurück zum Zitat Schiermeier, S., van Leeuwen, P., Lange, S., Geue, D., Daumer, M., Reinhard, J., Gro¨nemeyer, D., & Hatzmann, W. (2007). Fetal heart rate variation in magnetocardiography and cardiotocography–a direct comparison of the two methods. Zeitschrift fur Geburtshilfe und Neonatologie, 211(5), 179–184.CrossRef Schiermeier, S., van Leeuwen, P., Lange, S., Geue, D., Daumer, M., Reinhard, J., Gro¨nemeyer, D., & Hatzmann, W. (2007). Fetal heart rate variation in magnetocardiography and cardiotocography–a direct comparison of the two methods. Zeitschrift fur Geburtshilfe und Neonatologie, 211(5), 179–184.CrossRef
160.
Zurück zum Zitat Spilka, J., Chud´ǎcek, V., Koucky`, M., Lhotsk´a, L., Huptych, M., Jank, P., Georgoulas, G., & Stylios, C. (2012). Using nonlinear features for fetal heart rate classification. Biomedical Signal Processing and Control, 7(4), 350–357. Spilka, J., Chud´ǎcek, V., Koucky`, M., Lhotsk´a, L., Huptych, M., Jank, P., Georgoulas, G., & Stylios, C. (2012). Using nonlinear features for fetal heart rate classification. Biomedical Signal Processing and Control, 7(4), 350–357.
161.
Zurück zum Zitat Signorini, M. G., Fanelli, A., & Magenes, G. (2014). Monitoring fetal heart rate during pregnancy: Contributions from advanced signal processing and wearable technology. Computational and Mathematical Methods in Medicine, 2014, 1–10.CrossRef Signorini, M. G., Fanelli, A., & Magenes, G. (2014). Monitoring fetal heart rate during pregnancy: Contributions from advanced signal processing and wearable technology. Computational and Mathematical Methods in Medicine, 2014, 1–10.CrossRef
162.
Zurück zum Zitat of the European Society of Cardiology, T. F, et al. (1996). Heart rate variability standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17, 354–381.CrossRef of the European Society of Cardiology, T. F, et al. (1996). Heart rate variability standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17, 354–381.CrossRef
163.
Zurück zum Zitat Blagus, R., & Lusa, L. (2002). SMOTE for high-dimensional Class Imbalanced data. BMC Bioinformatics, 16, 321–357. Blagus, R., & Lusa, L. (2002). SMOTE for high-dimensional Class Imbalanced data. BMC Bioinformatics, 16, 321–357.
164.
Zurück zum Zitat Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357.MATH Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357.MATH
165.
Zurück zum Zitat Organization, W. H, et al. (2012). Born too soon: The global action report on preterm birth. Geneva: World Health Organization. Organization, W. H, et al. (2012). Born too soon: The global action report on preterm birth. Geneva: World Health Organization.
166.
Zurück zum Zitat Pooley, J. (2013). Gestation-specific infant mortality in England and Wales, 2011. London, UK: UK National Statstics. Pooley, J. (2013). Gestation-specific infant mortality in England and Wales, 2011. London, UK: UK National Statstics.
167.
Zurück zum Zitat Lucovnik, M., Maner, W. L., Chambliss, L. R., Blumrick, R., Balducci, J., Novak-Antolic, Z., & Garfield, R. E. (2011). Noninvasive uterine electromyography for prediction of preterm delivery. American Journal of Obstetrics and Gynecology, 204(3), 228–2e1.CrossRef Lucovnik, M., Maner, W. L., Chambliss, L. R., Blumrick, R., Balducci, J., Novak-Antolic, Z., & Garfield, R. E. (2011). Noninvasive uterine electromyography for prediction of preterm delivery. American Journal of Obstetrics and Gynecology, 204(3), 228–2e1.CrossRef
169.
Zurück zum Zitat Leman, H., Marque, C., & Gondry, J. (1999). Use of the electrohysterogram signal for characterization of contractions during pregnancy. IEEE Transactions on Biomedical Engineering, 46(10), 1222–1229.CrossRef Leman, H., Marque, C., & Gondry, J. (1999). Use of the electrohysterogram signal for characterization of contractions during pregnancy. IEEE Transactions on Biomedical Engineering, 46(10), 1222–1229.CrossRef
170.
Zurück zum Zitat Maner, W. L., Garfield, R. E., Maul, H., Olson, G., & Saade, G. (2003). Predicting term and preterm delivery with transabdominal uterine electromyography. Obstetrics & Gynecology, 101(6), 1254–1260. Maner, W. L., Garfield, R. E., Maul, H., Olson, G., & Saade, G. (2003). Predicting term and preterm delivery with transabdominal uterine electromyography. Obstetrics & Gynecology, 101(6), 1254–1260.
171.
Zurück zum Zitat Fele-Zorˇz, G., Kavˇsek, G., Novak-Antoliˇ c, ˇ. Z., & Jager, F. (2008). A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Medical & Biological Engineering & Computing, 46(9), 911–922.CrossRef Fele-Zorˇz, G., Kavˇsek, G., Novak-Antoliˇ c, ˇ. Z., & Jager, F. (2008). A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Medical & Biological Engineering & Computing, 46(9), 911–922.CrossRef
172.
Zurück zum Zitat Phinyomark, A., Limsakul, C., & Phukpattaranont, P. (2009). A novel feature extraction for robust EMG pattern recognition. arXiv preprint arXiv:0912.3973. Phinyomark, A., Limsakul, C., & Phukpattaranont, P. (2009). A novel feature extraction for robust EMG pattern recognition. arXiv preprint arXiv:0912.3973.
173.
Zurück zum Zitat Phinyomark, A., Nuidod, A., Phukpattaranont, P., & Limsakul, C. (2012). Feature extraction and reduction of wavelet transform coefficients for EMG pattern classification. Elektronika ir Elektrotechnika, 122(6), 27–32.CrossRef Phinyomark, A., Nuidod, A., Phukpattaranont, P., & Limsakul, C. (2012). Feature extraction and reduction of wavelet transform coefficients for EMG pattern classification. Elektronika ir Elektrotechnika, 122(6), 27–32.CrossRef
174.
Zurück zum Zitat Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039–H2049. Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039–H2049.
175.
Zurück zum Zitat Weatherall, D. J. (2013). The role of the inherited disorders of hemoglobin, the first molecular diseases, in the future of human genetics. Annual Review of Genomics and Human Genetics, 14, 1–24.CrossRef Weatherall, D. J. (2013). The role of the inherited disorders of hemoglobin, the first molecular diseases, in the future of human genetics. Annual Review of Genomics and Human Genetics, 14, 1–24.CrossRef
176.
Zurück zum Zitat Weatherall, D. J. (2010). The importance of micromapping the gene frequencies for the common inherited disorders of haemoglobin. British Journal of Haematology, 149(5), 635–637.CrossRef Weatherall, D. J. (2010). The importance of micromapping the gene frequencies for the common inherited disorders of haemoglobin. British Journal of Haematology, 149(5), 635–637.CrossRef
177.
Zurück zum Zitat Weatherall, D. J. (2010). The inherited diseases of hemoglobin are an emerging global health burden. Blood, 115(22), 4331–4336.CrossRef Weatherall, D. J. (2010). The inherited diseases of hemoglobin are an emerging global health burden. Blood, 115(22), 4331–4336.CrossRef
178.
Zurück zum Zitat Kosaryan, M., Karami, H., Zafari, M., & Yaghobi, N. (2014). Report on patients with non transfusion-dependent β-thalassemia major being treated with hydroxyurea attending the Thalassemia Research Center, Sari, Mazandaran Province, Islamic Republic of Iran in 2013. Hemoglobin, 38(2), 115–118.CrossRef Kosaryan, M., Karami, H., Zafari, M., & Yaghobi, N. (2014). Report on patients with non transfusion-dependent β-thalassemia major being treated with hydroxyurea attending the Thalassemia Research Center, Sari, Mazandaran Province, Islamic Republic of Iran in 2013. Hemoglobin, 38(2), 115–118.CrossRef
179.
Zurück zum Zitat Magoulas, G. D., & Prentza, A. (2001). Machine learning in medical applications. In Machine Learning and its applications (pp. 300–307). Berlin: Springer. Magoulas, G. D., & Prentza, A. (2001). Machine learning in medical applications. In Machine Learning and its applications (pp. 300–307). Berlin: Springer.
180.
Zurück zum Zitat Consortium, G. P., et al. (2010). A map of human genome variation from population-scale sequencing. Nature, 467(7319), 1061–1073.CrossRef Consortium, G. P., et al. (2010). A map of human genome variation from population-scale sequencing. Nature, 467(7319), 1061–1073.CrossRef
181.
Zurück zum Zitat Bush, W. S., & Moore, J. H. (2012). Genome-wide association studies. PLoS Computational Biology, 8(12), e1002822.CrossRef Bush, W. S., & Moore, J. H. (2012). Genome-wide association studies. PLoS Computational Biology, 8(12), e1002822.CrossRef
182.
Zurück zum Zitat Burton, P. R., Clayton, D. G., Cardon, L. R., Craddock, N., Deloukas, P., Duncanson, A., Kwiatkowski, D. P., McCarthy, M. I., Ouwehand, W. H., Samani, N. J., et al. (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447(7145), 661–678.CrossRef Burton, P. R., Clayton, D. G., Cardon, L. R., Craddock, N., Deloukas, P., Duncanson, A., Kwiatkowski, D. P., McCarthy, M. I., Ouwehand, W. H., Samani, N. J., et al. (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447(7145), 661–678.CrossRef
183.
Zurück zum Zitat Tabangin, M. E., Woo, J. G., & Martin, L. J. (2009). The effect of minor allele frequency on the likelihood of obtaining false positives. In BMC proceedings (Vol. 3, p. S41). BioMed Central Ltd. Tabangin, M. E., Woo, J. G., & Martin, L. J. (2009). The effect of minor allele frequency on the likelihood of obtaining false positives. In BMC proceedings (Vol. 3, p. S41). BioMed Central Ltd.
184.
Zurück zum Zitat Lam, A. C., Schouten, M., Aulchenko, Y. S., Haley, C. S., & de Koning, D.-J. (2007). Rapid and robust association mapping of expression quantitative trait loci. In BMC Proceedings (Vol. 1, p. S144). BioMed Central Ltd. Lam, A. C., Schouten, M., Aulchenko, Y. S., Haley, C. S., & de Koning, D.-J. (2007). Rapid and robust association mapping of expression quantitative trait loci. In BMC Proceedings (Vol. 1, p. S144). BioMed Central Ltd.
185.
Zurück zum Zitat Florez, J. C., Manning, A. K., Dupuis, J., McAteer, J., Irenze, K., Gianniny, L., Mirel, D. B., Fox, C. S., Cupples, L. A., & Meigs, J. B. (2007). A 100K genome-wide association scan for diabetes and related traits in the Framingham Heart Study: Replication and integration with other genome-wide datasets. Diabetes, 56, 3063–3074.CrossRef Florez, J. C., Manning, A. K., Dupuis, J., McAteer, J., Irenze, K., Gianniny, L., Mirel, D. B., Fox, C. S., Cupples, L. A., & Meigs, J. B. (2007). A 100K genome-wide association scan for diabetes and related traits in the Framingham Heart Study: Replication and integration with other genome-wide datasets. Diabetes, 56, 3063–3074.CrossRef
186.
Zurück zum Zitat Anderson, C. A., Pettersson, F. H., Clarke, G. M., Cardon, L. R., Morris, A. P., & Zondervan, K. T. (2010). Data quality control in genetic case-control association studies. Nature Protocols, 5(9), 1564–1573.CrossRef Anderson, C. A., Pettersson, F. H., Clarke, G. M., Cardon, L. R., Morris, A. P., & Zondervan, K. T. (2010). Data quality control in genetic case-control association studies. Nature Protocols, 5(9), 1564–1573.CrossRef
187.
Zurück zum Zitat Laurie, C. C., Doheny, K. F., Mirel, D. B., Pugh, E. W., Bierut, L. J., Bhangale, T., Boehm, F., Caporaso, N. E., Cornelis, M. C., Edenberg, H. J., et al. (2010). Quality control and quality assurance in genotypic data for genome-wide association studies. Genetic Epidemiology, 34(6), 591–602.CrossRef Laurie, C. C., Doheny, K. F., Mirel, D. B., Pugh, E. W., Bierut, L. J., Bhangale, T., Boehm, F., Caporaso, N. E., Cornelis, M. C., Edenberg, H. J., et al. (2010). Quality control and quality assurance in genotypic data for genome-wide association studies. Genetic Epidemiology, 34(6), 591–602.CrossRef
188.
Zurück zum Zitat Qiu, L., Na, R., Xu, R., Wang, S., Sheng, H., Wu, W., & Qu, Y. (2014). Quantitative assessment of the effect of KCNJ11 gene polymorphism on the risk of type 2 diabetes. PloS One, 9(4), e93961.CrossRef Qiu, L., Na, R., Xu, R., Wang, S., Sheng, H., Wu, W., & Qu, Y. (2014). Quantitative assessment of the effect of KCNJ11 gene polymorphism on the risk of type 2 diabetes. PloS One, 9(4), e93961.CrossRef
189.
Zurück zum Zitat Consortium, D. S., Consortium, D. M., Mahajan, A., Go, M. J., Zhang, W., Below, J. E., Gaulton, K. J., Ferreira, T., Horikoshi, M., Johnson, A. D., et al. (2014). Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nature Genetics, 46(3), 234–244.CrossRef Consortium, D. S., Consortium, D. M., Mahajan, A., Go, M. J., Zhang, W., Below, J. E., Gaulton, K. J., Ferreira, T., Horikoshi, M., Johnson, A. D., et al. (2014). Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nature Genetics, 46(3), 234–244.CrossRef
190.
Zurück zum Zitat Phani, N. M., Guddattu, V., Bellampalli, R., Seenappa, V., Adhikari, P., Nagri, S. K., Sydney, C., Mundyat, G. P., Satyamoorthy, K., Rai, P. S., et al. (2014). Population specific impact of genetic variants in KCNJ11 gene to type 2 diabetes: A case-control and meta-analysis study. PloS One, 9(9), e107021.CrossRef Phani, N. M., Guddattu, V., Bellampalli, R., Seenappa, V., Adhikari, P., Nagri, S. K., Sydney, C., Mundyat, G. P., Satyamoorthy, K., Rai, P. S., et al. (2014). Population specific impact of genetic variants in KCNJ11 gene to type 2 diabetes: A case-control and meta-analysis study. PloS One, 9(9), e107021.CrossRef
191.
Zurück zum Zitat Cheema, A. K., Li, T., Liuzzi, J. P., Zarini, G. G., Dorak, M. T., & Huffman, F. G. (2015). Genetic associations of PPARGC1A with type 2 diabetes: Differences among populations with African origins. Journal of Diabetes Research, 2015, 921274.CrossRef Cheema, A. K., Li, T., Liuzzi, J. P., Zarini, G. G., Dorak, M. T., & Huffman, F. G. (2015). Genetic associations of PPARGC1A with type 2 diabetes: Differences among populations with African origins. Journal of Diabetes Research, 2015, 921274.CrossRef
192.
Zurück zum Zitat James, W. (2008). WHO recognition of the global obesity epidemic. International Journal of Obesity, 32, S120–S126.CrossRef James, W. (2008). WHO recognition of the global obesity epidemic. International Journal of Obesity, 32, S120–S126.CrossRef
193.
Zurück zum Zitat Speliotes, E. K., Willer, C. J., Berndt, S. I., Monda, K. L., Thorleifsson, G., Jackson, A. U., Allen, H. L., Lindgren, C. M., Luan, J., Ma¨gi, R., et al. (2010). Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics, 42(11), 937–948.CrossRef Speliotes, E. K., Willer, C. J., Berndt, S. I., Monda, K. L., Thorleifsson, G., Jackson, A. U., Allen, H. L., Lindgren, C. M., Luan, J., Ma¨gi, R., et al. (2010). Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics, 42(11), 937–948.CrossRef
194.
Zurück zum Zitat Harbron, J., Van der Merwe, L., Zaahl, M. G., Kotze, M. J., & Senekal, M. (2014). Fat mass and obesity-associated (FTO) gene polymorphisms are associated with physical activity, food intake, eating behaviors, psychological health, and modeled change in body mass index in overweight/obese Caucasian adults. Nutrients, 6(8), 3130–3152.CrossRef Harbron, J., Van der Merwe, L., Zaahl, M. G., Kotze, M. J., & Senekal, M. (2014). Fat mass and obesity-associated (FTO) gene polymorphisms are associated with physical activity, food intake, eating behaviors, psychological health, and modeled change in body mass index in overweight/obese Caucasian adults. Nutrients, 6(8), 3130–3152.CrossRef
195.
196.
Zurück zum Zitat Poloz, Y., & Stambolic, V. (2015). Obesity and cancer, a case for insulin signaling. Cell Death & Disease, 6(12), e2037.CrossRef Poloz, Y., & Stambolic, V. (2015). Obesity and cancer, a case for insulin signaling. Cell Death & Disease, 6(12), e2037.CrossRef
197.
Zurück zum Zitat Bullen, V., & Feenie, V. (2015). The human cost of failing to address obesity. British Journal of Obesity, 1, 19–24. Bullen, V., & Feenie, V. (2015). The human cost of failing to address obesity. British Journal of Obesity, 1, 19–24.
198.
Zurück zum Zitat Rao, K. R., Lal, N., & Giridharan, N. (2014). Genetic & epigenetic approach to human obesity. The Indian Journal of Medical Research, 140(5), 589. Rao, K. R., Lal, N., & Giridharan, N. (2014). Genetic & epigenetic approach to human obesity. The Indian Journal of Medical Research, 140(5), 589.
199.
Zurück zum Zitat Hung, C.-F., Breen, G., Czamara, D., Corre, T., Wolf, C., Kloiber, S., Bergmann, S., Craddock, N., Gill, M., Holsboer, F., et al. (2015). A genetic risk score combining 32 SNPs is associated with body mass index and improves obesity prediction in people with major depressive disorder. BMC Medicine, 13(1), 1.CrossRef Hung, C.-F., Breen, G., Czamara, D., Corre, T., Wolf, C., Kloiber, S., Bergmann, S., Craddock, N., Gill, M., Holsboer, F., et al. (2015). A genetic risk score combining 32 SNPs is associated with body mass index and improves obesity prediction in people with major depressive disorder. BMC Medicine, 13(1), 1.CrossRef
200.
Zurück zum Zitat Van Dijk, S., Molloy, P., Varinli, H., Morrison, J., Muhlhausler, B., Buckley, M., Clark, S., McMillen, I., Noakes, M., Samaras, K., et al. (2015). Epigenetics and human obesity. International Journal of Obesity, 39(1), 85–97.CrossRef Van Dijk, S., Molloy, P., Varinli, H., Morrison, J., Muhlhausler, B., Buckley, M., Clark, S., McMillen, I., Noakes, M., Samaras, K., et al. (2015). Epigenetics and human obesity. International Journal of Obesity, 39(1), 85–97.CrossRef
201.
Zurück zum Zitat Loos, R. J. (2012). Genetic determinants of common obesity and their value in prediction. Best Practice & Research Clinical Endocrinology & Metabolism, 26(2), 211–226.CrossRef Loos, R. J. (2012). Genetic determinants of common obesity and their value in prediction. Best Practice & Research Clinical Endocrinology & Metabolism, 26(2), 211–226.CrossRef
202.
Zurück zum Zitat Pirmohamed, M. (2011). Pharmacogenetics: Past, present and future. Drug Discovery Today, 16(19), 852–861.CrossRef Pirmohamed, M. (2011). Pharmacogenetics: Past, present and future. Drug Discovery Today, 16(19), 852–861.CrossRef
203.
Zurück zum Zitat Mardis, E. R. (2008). The impact of next-generation sequencing technology on genetics. Trends in Genetics, 24(3), 133–141.CrossRef Mardis, E. R. (2008). The impact of next-generation sequencing technology on genetics. Trends in Genetics, 24(3), 133–141.CrossRef
204.
Zurück zum Zitat Sung, W.-K. (2012). Bioinformatics applications in genomics. Computer, 45(6), 57–63.CrossRef Sung, W.-K. (2012). Bioinformatics applications in genomics. Computer, 45(6), 57–63.CrossRef
205.
Zurück zum Zitat Samish, I., Bourne, P. E., & Najmanovich, R. J. (2015). Achievements and challenges in structural bioinformatics and computational biophysics. Bioinformatics, 31(1), 146–150.CrossRef Samish, I., Bourne, P. E., & Najmanovich, R. J. (2015). Achievements and challenges in structural bioinformatics and computational biophysics. Bioinformatics, 31(1), 146–150.CrossRef
206.
Zurück zum Zitat Higdon, R., Haynes, W., Stanberry, L., Stewart, E., Yandl, G., Howard, C., Broomall, W., Kolker, N., & Kolker, E. (2013). Unraveling the complexities of life sciences data. Big Data, 1(1), 42–50.CrossRef Higdon, R., Haynes, W., Stanberry, L., Stewart, E., Yandl, G., Howard, C., Broomall, W., Kolker, N., & Kolker, E. (2013). Unraveling the complexities of life sciences data. Big Data, 1(1), 42–50.CrossRef
207.
Zurück zum Zitat Rudin, C., Dunson, D., Irizarry, R., Ji, H., Laber, E., Leek, J., McCormick, T., Rose, S., Schafer, C., Van der Laan, M., et al. (2014). Discovery with data: Leveraging statistics with computer science to transform science and society. ASA (American Statistical Association). Rudin, C., Dunson, D., Irizarry, R., Ji, H., Laber, E., Leek, J., McCormick, T., Rose, S., Schafer, C., Van der Laan, M., et al. (2014). Discovery with data: Leveraging statistics with computer science to transform science and society. ASA (American Statistical Association).
208.
Zurück zum Zitat Tanwani, A. K., Afridi, J., Shafiq, M. Z., & Farooq, M. (2009). Guidelines to select machine learning scheme for classification of biomedical datasets. In Evolutionary computation, machine learning and data mining in bioinformatics (pp. 128–139). Berlin/Heidelberg: Springer. Tanwani, A. K., Afridi, J., Shafiq, M. Z., & Farooq, M. (2009). Guidelines to select machine learning scheme for classification of biomedical datasets. In Evolutionary computation, machine learning and data mining in bioinformatics (pp. 128–139). Berlin/Heidelberg: Springer.
209.
Zurück zum Zitat Sheehan, S., & Song, Y. S. (2016). Deep learning for population genetic inference. PLoS Computational Biology, 12(3), e1004845.CrossRef Sheehan, S., & Song, Y. S. (2016). Deep learning for population genetic inference. PLoS Computational Biology, 12(3), e1004845.CrossRef
210.
Zurück zum Zitat Rabbani, B., Tekin, M., & Mahdieh, N. (2014). The promise of whole-exome sequencing in medical genetics. Journal of Human Genetics, 59(1), 5–15.CrossRef Rabbani, B., Tekin, M., & Mahdieh, N. (2014). The promise of whole-exome sequencing in medical genetics. Journal of Human Genetics, 59(1), 5–15.CrossRef
211.
Zurück zum Zitat Upstill-Goddard, R., Eccles, D., Fliege, J., & Collins, A. (2012). Machine learning approaches for the discovery of gene–gene interactions in disease data. Briefings in Bioinformatics, 14, bbs024. Upstill-Goddard, R., Eccles, D., Fliege, J., & Collins, A. (2012). Machine learning approaches for the discovery of gene–gene interactions in disease data. Briefings in Bioinformatics, 14, bbs024.
212.
Zurück zum Zitat Manolio, T. A. (2010). Genomewide association studies and assessment of the risk of disease. New England Journal of Medicine, 363(2), 166–176.CrossRef Manolio, T. A. (2010). Genomewide association studies and assessment of the risk of disease. New England Journal of Medicine, 363(2), 166–176.CrossRef
213.
Zurück zum Zitat Moore, J. H., Asselbergs, F. W., & Williams, S. M. (2010). Bioinformatics challenges for genome-wide association studies. Bioinformatics, 26(4), 445–455.CrossRef Moore, J. H., Asselbergs, F. W., & Williams, S. M. (2010). Bioinformatics challenges for genome-wide association studies. Bioinformatics, 26(4), 445–455.CrossRef
214.
Zurück zum Zitat Niel, C., Sinoquet, C., Dina, C., & Rocheleau, G. (2015). A survey about methods dedicated to epistasis detection. Frontiers in Genetics, 6, 285.CrossRef Niel, C., Sinoquet, C., Dina, C., & Rocheleau, G. (2015). A survey about methods dedicated to epistasis detection. Frontiers in Genetics, 6, 285.CrossRef
215.
Zurück zum Zitat Montan˜ ez, C. A. C., Fergus, P., Hussain, A., Al-Jumeily, D., Abdulaimma, B., & Al-Askar, H. (2016). A genetic analytics approach for risk variant identification to support intervention strategies for people susceptible to polygenic obesity and overweight. In International Conference on Intelligent Computing (pp. 808–819). Springer. Montan˜ ez, C. A. C., Fergus, P., Hussain, A., Al-Jumeily, D., Abdulaimma, B., & Al-Askar, H. (2016). A genetic analytics approach for risk variant identification to support intervention strategies for people susceptible to polygenic obesity and overweight. In International Conference on Intelligent Computing (pp. 808–819). Springer.
Metadaten
Titel
Big Data and Data Science Applications for Independent and Healthy Living
verfasst von
Robert Keight
Dhiya Al-Jumeily
Abir Hussain
Paul Fergus
Jamila Mustafina
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-60137-3_5