Skip to main content
Erschienen in: Journal of Materials Science 24/2018

20.08.2018 | Energy materials

Binary shape-stabilized phase change materials based on poly(ethylene glycol)/polyurethane composite with dual-phase transition

verfasst von: Changzhong Chen, Jun Chen, Yifan Jia, Paul D. Topham, Linge Wang

Erschienen in: Journal of Materials Science | Ausgabe 24/2018

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Novel binary shape-stabilized composite phase change materials (CPCMs) have been successfully prepared using a crosslinked polyurethane (PU) copolymer with a solid–solid phase transition as the supporting framework for loading additional (‘free’) poly(ethylene glycol) (PEG). The PU copolymer was synthesized by a two-step method using 2-hydroxypropyl-β-cyclodextrin (Hp-β-CD) as a chain extender and PEG as a soft segment. The composition, morphology, phase transition behavior and thermal properties of the prepared CPCMs have been elucidated by a wide range of techniques. Investigation of FTIR spectra and SEM images reveal that the ‘free’ PEG and the PU copolymer network within the CPCMs have good compatibility and high affinity due to the noncovalent interactions. Polarized light optical microscopy shows that the CPCMs produce smaller spherulites than pristine PEG, and homogeneous nucleation was prevalent during the crystallization process. Due to the dual-phase transition of the CPCMs (the solid–liquid phase transition of ‘free’ PEG and solid–solid phase transition of the PU matrix) occurring within the same, narrow temperature window, the CPCMs have far higher heat storage density compared with that of traditional shape-stabilized PCMs with the same ‘free’ PEG content. Importantly, thermal cycling and thermogravimetric analyses show that the CPCMs have good reusability and excellent thermal stability for potential use in thermoregulation or energy storage applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Abhat A (1983) Low temperature latent heat thermal energy storage: heat storage materials. Sol Energy 30:313–332CrossRef Abhat A (1983) Low temperature latent heat thermal energy storage: heat storage materials. Sol Energy 30:313–332CrossRef
2.
Zurück zum Zitat Khudhair AM, Farid MM (2004) A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manag 45:263–275CrossRef Khudhair AM, Farid MM (2004) A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manag 45:263–275CrossRef
3.
Zurück zum Zitat Zhang P, Xiao X, Ma ZW (2016) A review of the composite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement. Appl Energy 165:472–510CrossRef Zhang P, Xiao X, Ma ZW (2016) A review of the composite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement. Appl Energy 165:472–510CrossRef
4.
Zurück zum Zitat Kenisarin M, Mahkamov K (2007) Solar energy storage using phase change materials. Renew Sust Energy Rev 11:1913–1965CrossRef Kenisarin M, Mahkamov K (2007) Solar energy storage using phase change materials. Renew Sust Energy Rev 11:1913–1965CrossRef
5.
Zurück zum Zitat Pielichowska K, Pielichowski K (2014) Phase change materials for thermal energy storage. Prog Mater Sci 65:67–123CrossRef Pielichowska K, Pielichowski K (2014) Phase change materials for thermal energy storage. Prog Mater Sci 65:67–123CrossRef
6.
Zurück zum Zitat Zhou D, Zhao CY, Tian Y (2012) Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy 92:593–605CrossRef Zhou D, Zhao CY, Tian Y (2012) Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy 92:593–605CrossRef
7.
Zurück zum Zitat Oró E, de Gracia A, Castell A, Farid MM, Cabeza LF (2012) Review on phase change materials (PCMs) for cold thermal energy storage applications. Appl Energy 99:513–533CrossRef Oró E, de Gracia A, Castell A, Farid MM, Cabeza LF (2012) Review on phase change materials (PCMs) for cold thermal energy storage applications. Appl Energy 99:513–533CrossRef
8.
Zurück zum Zitat Jacob R, Bruno F (2015) Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage. Renew Sust Energy Rev 48:79–87CrossRef Jacob R, Bruno F (2015) Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage. Renew Sust Energy Rev 48:79–87CrossRef
9.
Zurück zum Zitat Mehrali M, Latibari ST, Rosen MA, Akhiani AR, Naghavi MS, Sadeghinezhad E, Metselaar HSC, Nejad MM, Mehrali M (2016) From rice husk to high performance shape stabilized phase change materials for thermal energy storage. RSC Adv 6:45595–45604CrossRef Mehrali M, Latibari ST, Rosen MA, Akhiani AR, Naghavi MS, Sadeghinezhad E, Metselaar HSC, Nejad MM, Mehrali M (2016) From rice husk to high performance shape stabilized phase change materials for thermal energy storage. RSC Adv 6:45595–45604CrossRef
10.
Zurück zum Zitat Latibari ST, Mehrali M, Mehrali M, Afifi ABM, Mahlia TMI, Akhiani AR, Metselaar HSC (2015) Facile synthesis and thermal performances of stearic acid/titania core/shell nanocapsules by sol-gel method. Energy 85:635–644CrossRef Latibari ST, Mehrali M, Mehrali M, Afifi ABM, Mahlia TMI, Akhiani AR, Metselaar HSC (2015) Facile synthesis and thermal performances of stearic acid/titania core/shell nanocapsules by sol-gel method. Energy 85:635–644CrossRef
11.
Zurück zum Zitat Wu Y, Chen C, Jia Y, Wu J, Huang Y, Wang L (2018) Review on electrospun ultrafine phase change fibers (PCFs) for thermal energy storage. Appl Energy 210:167–181CrossRef Wu Y, Chen C, Jia Y, Wu J, Huang Y, Wang L (2018) Review on electrospun ultrafine phase change fibers (PCFs) for thermal energy storage. Appl Energy 210:167–181CrossRef
12.
Zurück zum Zitat Sarı A, Karaipekli A (2009) Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage. Sol Energy Mater Sol Cells 93:571–576CrossRef Sarı A, Karaipekli A (2009) Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage. Sol Energy Mater Sol Cells 93:571–576CrossRef
13.
Zurück zum Zitat Wang C, Feng L, Li W, Zheng J, Tian W, Li X (2012) Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: the influence of the pore structure of the carbon materials. Sol Energy Mater Sol Cells 105:21–26CrossRef Wang C, Feng L, Li W, Zheng J, Tian W, Li X (2012) Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: the influence of the pore structure of the carbon materials. Sol Energy Mater Sol Cells 105:21–26CrossRef
14.
Zurück zum Zitat Kholmanov I, Kim J, Ou E, Ruoff RS, Shi L (2015) Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials. ACS Nano 9:11699–11707CrossRef Kholmanov I, Kim J, Ou E, Ruoff RS, Shi L (2015) Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials. ACS Nano 9:11699–11707CrossRef
15.
Zurück zum Zitat Xia Y, Cui W, Zhang H, Xu F, Sun L, Zou Y, Chu H, Yan E (2017) Synthesis of three-dimensional graphene aerogel encapsulated n-octadecane for enhancing phase- change behavior and thermal conductivity. J Mater Chem A 5:15191–15199CrossRef Xia Y, Cui W, Zhang H, Xu F, Sun L, Zou Y, Chu H, Yan E (2017) Synthesis of three-dimensional graphene aerogel encapsulated n-octadecane for enhancing phase- change behavior and thermal conductivity. J Mater Chem A 5:15191–15199CrossRef
16.
Zurück zum Zitat Qi GQ, Liang CL, Bao RY, Liu ZY, Yang W, Xie BH, Yang MB (2014) Polyethylene glycol based shape-stabilized phase change material for thermal energy storage with ultra-low content of graphene oxide. Sol Energy Mater Sol Cells 123:171–177CrossRef Qi GQ, Liang CL, Bao RY, Liu ZY, Yang W, Xie BH, Yang MB (2014) Polyethylene glycol based shape-stabilized phase change material for thermal energy storage with ultra-low content of graphene oxide. Sol Energy Mater Sol Cells 123:171–177CrossRef
17.
Zurück zum Zitat Fang G, Li H, Chen Z, Liu X (2011) Preparation and properties of palmitic acid/SiO2 composites with flame retardant as thermal energy storage materials. Sol Energy Mater Sol Cells 95:1875–1881CrossRef Fang G, Li H, Chen Z, Liu X (2011) Preparation and properties of palmitic acid/SiO2 composites with flame retardant as thermal energy storage materials. Sol Energy Mater Sol Cells 95:1875–1881CrossRef
18.
Zurück zum Zitat Sarı A, Biçer A (2012) Thermal energy storage properties and thermal reliability of some fatty acid esters/building material composites as novel form-stable PCMs. Sol Energy Mater Sol Cells 101:114–122CrossRef Sarı A, Biçer A (2012) Thermal energy storage properties and thermal reliability of some fatty acid esters/building material composites as novel form-stable PCMs. Sol Energy Mater Sol Cells 101:114–122CrossRef
19.
Zurück zum Zitat Liang XH, Guo YQ, Gu LZ, Ding EY (1995) Crystalline-amorphous phase transition of poly(ethylene glycol)/cellulose blend. Macromolecules 28:6551–6555CrossRef Liang XH, Guo YQ, Gu LZ, Ding EY (1995) Crystalline-amorphous phase transition of poly(ethylene glycol)/cellulose blend. Macromolecules 28:6551–6555CrossRef
20.
Zurück zum Zitat Chen C, Wang L, Huang Y (2011) Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends. Appl Energy 88:3133–3139CrossRef Chen C, Wang L, Huang Y (2011) Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends. Appl Energy 88:3133–3139CrossRef
21.
Zurück zum Zitat Wang L, Meng D (2010) Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage. Appl Energy 87:2660–2665CrossRef Wang L, Meng D (2010) Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage. Appl Energy 87:2660–2665CrossRef
22.
Zurück zum Zitat Mu M, Basheer PAM, Sha W, Bai Y, McNally T (2016) Shape stabilised phase change materials based on a high melt viscosity HDPE and paraffin waxes. Appl Energy 162:68–82CrossRef Mu M, Basheer PAM, Sha W, Bai Y, McNally T (2016) Shape stabilised phase change materials based on a high melt viscosity HDPE and paraffin waxes. Appl Energy 162:68–82CrossRef
23.
Zurück zum Zitat Chen C, Liu K, Wang H, Liu W, Zhang H (2013) Morphology and performances of electrospun polyethylene glycol/poly (dl-lactide) phase change ultrafine fibers for thermal energy storage. Sol Energy Mater Sol Cells 117:372–381CrossRef Chen C, Liu K, Wang H, Liu W, Zhang H (2013) Morphology and performances of electrospun polyethylene glycol/poly (dl-lactide) phase change ultrafine fibers for thermal energy storage. Sol Energy Mater Sol Cells 117:372–381CrossRef
24.
Zurück zum Zitat Hu W, Yu X (2012) Encapsulation of bio-based PCM with coaxial electrospun ultrafine fibers. RSC Adv 2:5580–5584CrossRef Hu W, Yu X (2012) Encapsulation of bio-based PCM with coaxial electrospun ultrafine fibers. RSC Adv 2:5580–5584CrossRef
25.
Zurück zum Zitat Chen Z, Wang J, Yu F, Zhang Z, Gao X (2015) Preparation and properties of graphene oxide-modified poly(melamine-formaldehyde) microcapsules containing phase change material n-dodecanol for thermal energy storage. J Mater Chem A 3:11624–11630CrossRef Chen Z, Wang J, Yu F, Zhang Z, Gao X (2015) Preparation and properties of graphene oxide-modified poly(melamine-formaldehyde) microcapsules containing phase change material n-dodecanol for thermal energy storage. J Mater Chem A 3:11624–11630CrossRef
26.
Zurück zum Zitat Chen C, Liu W, Wang Z, Peng K, Pan W, Xie Q (2015) Novel form stable phase change materials based on the composites of polyethylene glycol/polymeric solid-solid phase change material. Sol Energy Mater Sol Cells 134:80–88CrossRef Chen C, Liu W, Wang Z, Peng K, Pan W, Xie Q (2015) Novel form stable phase change materials based on the composites of polyethylene glycol/polymeric solid-solid phase change material. Sol Energy Mater Sol Cells 134:80–88CrossRef
27.
Zurück zum Zitat Tang B, Wang L, Xu Y, Xiu J, Zhang S (2016) Hexadecanol/phase change polyurethane composite as form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells 144:1–6CrossRef Tang B, Wang L, Xu Y, Xiu J, Zhang S (2016) Hexadecanol/phase change polyurethane composite as form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells 144:1–6CrossRef
28.
Zurück zum Zitat Zhang Y, Wang L, Tang B, Lu R, Zhang S (2016) Form-stable phase change materials with high phase change enthalpy from the composite of paraffin and cross-linking phase change structure. Appl Energy 184:241–246CrossRef Zhang Y, Wang L, Tang B, Lu R, Zhang S (2016) Form-stable phase change materials with high phase change enthalpy from the composite of paraffin and cross-linking phase change structure. Appl Energy 184:241–246CrossRef
29.
Zurück zum Zitat Liu Z, Wu B, Fu X, Yan P, Yuan Y, Zhou C, Lei J (2017) Two components based polyethylene glycol/thermosetting solid-solid phase change material composites as novel form stable phase change materials for flexible thermal energy storage application. Sol Energy Mater Sol Cells 170:197–204CrossRef Liu Z, Wu B, Fu X, Yan P, Yuan Y, Zhou C, Lei J (2017) Two components based polyethylene glycol/thermosetting solid-solid phase change material composites as novel form stable phase change materials for flexible thermal energy storage application. Sol Energy Mater Sol Cells 170:197–204CrossRef
30.
Zurück zum Zitat Chen C, Liu W, Wang H, Lin K (2015) Synthesis and performances of novel solid-solid phase change materials with hexahydroxy compounds for thermal energy storage. Appl Energy 152:198–206CrossRef Chen C, Liu W, Wang H, Lin K (2015) Synthesis and performances of novel solid-solid phase change materials with hexahydroxy compounds for thermal energy storage. Appl Energy 152:198–206CrossRef
31.
Zurück zum Zitat Peng K, Chen C, Pan W, Liu W, Wang Z, Zhu L (2016) Preparation and properties of β-cyclodextrin/4,4′-diphenylmethane diisocyanate/polyethylene glycol (β-CD/MDI/PEG) crosslinking copolymers as polymeric solid-solid phase change materials. Sol Energy Mater Sol Cells 145:238–247CrossRef Peng K, Chen C, Pan W, Liu W, Wang Z, Zhu L (2016) Preparation and properties of β-cyclodextrin/4,4′-diphenylmethane diisocyanate/polyethylene glycol (β-CD/MDI/PEG) crosslinking copolymers as polymeric solid-solid phase change materials. Sol Energy Mater Sol Cells 145:238–247CrossRef
32.
Zurück zum Zitat Chen C, Liu W, Wang H, Zhu L (2016) Synthesis and characterization of novel solid-solid phase change materials with a polyurethaneurea copolymer structure for thermal energy storage. RSC Adv 6:102997–103005CrossRef Chen C, Liu W, Wang H, Zhu L (2016) Synthesis and characterization of novel solid-solid phase change materials with a polyurethaneurea copolymer structure for thermal energy storage. RSC Adv 6:102997–103005CrossRef
33.
Zurück zum Zitat Narayanan G, Aguda R, Hartman M, Chung CC, Boy R, Gupta BS, Tonelli AE (2016) Fabrication and characterization of poly(ε-caprolactone)/Hp-β-cyclodextrin pseudorotaxane nanofibers. Biomacromol 17:271–279CrossRef Narayanan G, Aguda R, Hartman M, Chung CC, Boy R, Gupta BS, Tonelli AE (2016) Fabrication and characterization of poly(ε-caprolactone)/Hp-β-cyclodextrin pseudorotaxane nanofibers. Biomacromol 17:271–279CrossRef
34.
Zurück zum Zitat Liu Z, Fu X, Jiang L, Wu B, Wang J, Lei J (2016) Solvent-free synthesis and properties of novel solid-solid phase change materials with biodegradable castor oil for thermal energy storage. Sol Energy Mater Sol Cells 147:177–184CrossRef Liu Z, Fu X, Jiang L, Wu B, Wang J, Lei J (2016) Solvent-free synthesis and properties of novel solid-solid phase change materials with biodegradable castor oil for thermal energy storage. Sol Energy Mater Sol Cells 147:177–184CrossRef
35.
Zurück zum Zitat Su J, Liu P (2006) A novel solid-solid phase change heat storage material with polyurethane block copolymer structure. Energy Convers Manag 47:3185–3191CrossRef Su J, Liu P (2006) A novel solid-solid phase change heat storage material with polyurethane block copolymer structure. Energy Convers Manag 47:3185–3191CrossRef
Metadaten
Titel
Binary shape-stabilized phase change materials based on poly(ethylene glycol)/polyurethane composite with dual-phase transition
verfasst von
Changzhong Chen
Jun Chen
Yifan Jia
Paul D. Topham
Linge Wang
Publikationsdatum
20.08.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 24/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2806-2

Weitere Artikel der Ausgabe 24/2018

Journal of Materials Science 24/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.