This research was partially supported by the Brazilian research agencies CNPq and FAPERJ.
Abstract
From the point of view of the control theory, the literature indicates that stealthy and accurate cyber-physical attacks on Networked Control System (NCS) must be planned based on an accurate knowledge about the model of the attacked system. However, most literature about these attacks does not indicate how such knowledge is obtained by the attacker. So, to fill this hiatus, an Active System Identification attack is proposed in this paper, where the attacker injects data on the NCS to learn about its model. The attack is implemented based on two bio-inspired metaheuristics: Backtracking Search Optimization Algorithm (BSA) and Particle Swarm Optimization (PSO). To improve the accuracy of the estimated models, a statistical refinement is proposed for the outcomes of the two optimization algorithms. Additionally, a set of data injection attacks are shown in order to demonstrate the capability of the proposed attack in supporting the design of other sophisticated attacks. The results indicate a better performance of the BSA-based attacks, especially when the captured signals contain white Gaussian noise. The goal of this paper is to demonstrate the degree of accuracy that this System Identification attack may achieve, highlighting the potential impacts and encouraging the research of possible countermeasures.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Amin S, Litrico X, Sastry S, Bayen AM (2013) Cyber security of water scada systems part i: analysis and experimentation of stealthy deception attacks. IEEE Trans Control Syst Technol 21(5):1963–1970
CrossRef
2.
Bou-Harb E, Debbabi M, Assi C (2014) Cyber scanning: a comprehensive survey. IEEE Commun Surv Tutorials 16(3):1496–1519
CrossRef
3.
Chen X, Song Y, Yu J (2012) Network-in-the-loop simulation platform for control system. In: Asiasim 2012. Springer, pp 54–62
4.
Civicioglu P (2013) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219(15):8121–8144
MathSciNetMATH
5.
Dasgupta S, Routh A, Banerjee S, Agilageswari K, Balasubramanian R, Bhandarkar S, Chattopadhyay S, Kumar M, Gupta A (2013) Networked control of a large pressurized heavy water reactor (phwr) with discrete proportional-integral-derivative (pid) controllers. IEEE Trans Nucl Sci 60(5):3879–3888
CrossRef
6.
de Sa AO, da Costa Carmo LFR, Machado RCS (2017) Bio-inspired active attack for identification of networked control systems. In: 10th EAI international conference on bio-inspired information and communications technologies (BICT). ACM, pp 1–8
El-Sharkawi M, Huang C (1989) Variable structure tracking of dc motor for high performance applications. IEEE Trans Energy Convers 4(4):643–650
CrossRef
9.
Farooqui AA, Zaidi SSH, Memon AY, Qazi S (2014) Cyber security backdrop: a scada testbed. In: Computing, communications and IT applications conference (comcomap), 2014 IEEE. IEEE, pp 98–103
10.
George NV, Panda G (2012) A particle-swarm-optimization-based decentralized nonlinear active noise control system. IEEE Trans Instrum Meas 61(12):3378–3386
CrossRef
11.
Guha D, Roy PK, Banerjee S (2016) Application of backtracking search algorithm in load frequency control of multi-area interconnected power system. Ain Shams Eng J
12.
Kennedy R, Eberhart JE (1995) Particle swarm optimization. In: Proceedings of 1995 IEEE international conference on neural networks, pp 1942–1948
13.
Langner R (2011) Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur Priv 9(3):49–51
CrossRef
14.
Long M, Wu C-H, Hung JY (2005) Denial of service attacks on network-based control systems: impact and mitigation. IEEE Trans Ind Inf 1(2):85–96
CrossRef
15.
Öncü S, Ploeg J, van de Wouw N, Nijmeijer H (2014) Cooperative adaptive cruise control: network-aware analysis of string stability. IEEE Trans Intell Transp Syst 15(4):1527–1537
CrossRef
16.
Precup R-E, Balint A-D, Radac M-B, Petriu EM (2015) Backtracking search optimization algorithm-based approach to pid controller tuning for torque motor systems. In: 2015 9th annual IEEE international systems conference (syscon). IEEE, pp 127–132
17.
Sabău Ş, Oară C, Warnick S, Jadbabaie A (2017) Optimal distributed control for platooning via sparse coprime factorizations. IEEE Trans Autom Control 62(1):305–320
MathSciNetCrossRefMATH
18.
Shi Y, Huang J, Yu B (2013) Robust tracking control of networked control systems: application to a networked dc motor. IEEE Trans Ind Electron 60(12):5864–5874
CrossRef
19.
Si ML, Li HX, Chen XF, Wang GH (2010) Study on sample rate and performance of a networked control system by simulation. In: Advanced materials research, vol 139. Trans Tech Publ, pp 2225–2228
20.
Smith R (2011) A decoupled feedback structure for covertly appropriating networked control systems. In: Proceedings of the 18th IFAC world congress 2011, vol 18. IFAC-papersonline
21.
Smith RS (2015) Covert misappropriation of networked control systems: presenting a feedback structure. IEEE Control Syst 35(1):82–92
MathSciNetCrossRef
22.
Snoeren AC, Partridge C, Sanchez LA, Jones CE, Tchakountio F, Schwartz B, Kent ST, Strayer WT (2002) Single-packet ip traceback. IEEE/ACM Trans Networking (ToN) 10(6):721–734
CrossRef
23.
Stallings W (2006) Cryptography and network security: principles and practices. Pearson Education India, Delhi
24.
Teixeira A, Shames I, Sandberg H, Johansson KH (2015) A secure control framework for resource-limited adversaries. Automatica 51:135–148
MathSciNetCrossRefMATH
25.
Tran T, Ha QP, Nguyen HT (2007) Robust non-overshoot time responses using cascade sliding mode-pid control. Journal of Advanced Computational Intelligence and Intelligent Informatics 11(10):1224–1231
CrossRef
Uong S, Ngamroo I (2015) Coordinated control of dfig wind turbine and svc for robust power system stabilization. In: 2015 12th international conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON). IEEE, pp 1–6
Über diesen Artikel
Titel
Bio-inspired Active System Identification: a Cyber-Physical Intelligence Attack in Networked Control Systems
Autoren:
Alan Oliveira de Sá Luiz F. R. da C. Carmo Raphael C. S. Machado
Mobile Networks and Applications
The Journal of SPECIAL ISSUES on Mobility of Systems, Users, Data and Computing
Print ISSN: 1383-469X
Elektronische ISSN: 1572-8153
BranchenIndex Online
Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.
Bedingt durch die Altersstruktur vieler Kabelverteilnetze mit der damit verbundenen verminderten Isolationsfestigkeit oder durch fortschreitenden Kabelausbau ist es immer häufiger erforderlich, anstelle der Resonanz-Sternpunktserdung alternative Konzepte für die Sternpunktsbehandlung umzusetzen. Die damit verbundenen Fehlerortungskonzepte bzw. die Erhöhung der Restströme im Erdschlussfall führen jedoch aufgrund der hohen Fehlerströme zu neuen Anforderungen an die Erdungs- und Fehlerstromrückleitungs-Systeme. Lesen Sie hier über die Auswirkung von leitfähigen Strukturen auf die Stromaufteilung sowie die Potentialverhältnisse in urbanen Kabelnetzen bei stromstarken Erdschlüssen. Jetzt gratis downloaden!