Skip to main content

2015 | OriginalPaper | Buchkapitel

3. Bio-Inspired Design of a Multi-scale Pass Band Frequency Sensor Using Local Resonance Phenomena

verfasst von : Riaz Ahmed, Sourav Banerjee

Erschienen in: Experimental and Applied Mechanics, Volume 6

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With growing interest in nanotechnology, the manufacturing industries for Micro-Electro-Mechanical Systems (MEMS) and Nano-Electro-Mechanical-Systems (NEMS) are constantly thriving towards extraordinary precision in the machining and etching tools. It is a common practice, during manufacturing, a set of instructions are provided to a manufacturing tool, by actuating them at certain frequencies to perform their respective tasks. Every different task (e.g. cutting nano-channels, drilling micro-holes, nano-welding etc.) has unique instruction with unique frequency input. In such cases, other than the desired frequencies, remaining possible frequencies in the system needs to be filtered or stopped. It is extremely challenging to avoid system noises electronically and select or actuate specific frequencies. Hence, in a noisy environment (e.g. fluctuation of temperature, external vibration etc.) it is extremely difficult to provide a unique frequency to a tool to perform a task precisely without having an uncertainty. In this study, we intend to propose a mechanical model to precisely sense, pass and actuate desired frequencies and filter unwanted input frequencies, which in turn will result a mechanical pass band sensor. Traditionally researches are interested in stopping undesired frequencies to pass desired frequencies through local resonance phenomena. However, if only certain frequencies are required, it is extremely difficult to filter all unnecessary frequencies by creating frequency band gaps. Hence, in this effort, bio-inspired logistic, adopting local resonator physics is employed by extracting the benefit of unique frequency sensing, mechanically. Human cochlea senses only sonic (20 Hz to 20 kHz) frequencies by filtering all other frequencies in the environment. Basilar membrane is the principal component of the human cochlea with logarithmically decreasing stiffness from its basal to apical end. Basilar membrane composed of series of thin micro beams attached to each other, where each beam holds unique bending rigidity and hence, capable of resonating at a particular sonic frequency. Similarly, in this study, to replicate the functionality of a basilar membrane, a discrete mass-in-mass (DMM) metamaterial model is proposed while using a complete different physics of local resonance. It is hypothesized that, systematic arrangement of such DMM cells can select of band of frequencies, predictively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Caballero D, Sánchez-Dehesa J, Rubio C, Mártinez-Sala R, Sánchez-Pérez JV, Meseguer F, Llinares J (1999) Large two-dimensional sonic band gaps. Phys Rev E 60:R6316–R6319CrossRef Caballero D, Sánchez-Dehesa J, Rubio C, Mártinez-Sala R, Sánchez-Pérez JV, Meseguer F, Llinares J (1999) Large two-dimensional sonic band gaps. Phys Rev E 60:R6316–R6319CrossRef
2.
Zurück zum Zitat Phani AS, Woodhouse J, Fleck NA (2006) Wave propagation in two-dimensional periodic lattices. J Acoust Soc Am 119:1995–2005CrossRef Phani AS, Woodhouse J, Fleck NA (2006) Wave propagation in two-dimensional periodic lattices. J Acoust Soc Am 119:1995–2005CrossRef
3.
Zurück zum Zitat Huang HH, Sun CT, Huang GL (2009) On the negative effective mass density in acoustic metamaterials. Int J Eng Sci 47:610–617CrossRefMathSciNet Huang HH, Sun CT, Huang GL (2009) On the negative effective mass density in acoustic metamaterials. Int J Eng Sci 47:610–617CrossRefMathSciNet
4.
Zurück zum Zitat Huang GL, Sun CT (2010) Band gaps in a multiresonator acoustic metamaterial. J Vib Acoust 132:031003CrossRef Huang GL, Sun CT (2010) Band gaps in a multiresonator acoustic metamaterial. J Vib Acoust 132:031003CrossRef
5.
Zurück zum Zitat Krynkin A, Umnova O, Chong AYB, Taherzadeh S, Attenborough K (2010) Predictions and measurements of sound transmission through a periodic array of elastic shells in air. J Acoust Soc Am 128:3496–3506CrossRef Krynkin A, Umnova O, Chong AYB, Taherzadeh S, Attenborough K (2010) Predictions and measurements of sound transmission through a periodic array of elastic shells in air. J Acoust Soc Am 128:3496–3506CrossRef
6.
Zurück zum Zitat Oudich M, Li Y, Assouar BM, Hou Z (2010) A sonic band gap based on the locally resonant phononic plates with stubs. New J Phys 12:083049CrossRef Oudich M, Li Y, Assouar BM, Hou Z (2010) A sonic band gap based on the locally resonant phononic plates with stubs. New J Phys 12:083049CrossRef
7.
Zurück zum Zitat Hsu J-C (2011) Local resonances-induced low-frequency band gaps in two-dimensional phononic crystal slabs with periodic stepped resonators. J Phys D Appl Phys 44:55401–55409CrossRef Hsu J-C (2011) Local resonances-induced low-frequency band gaps in two-dimensional phononic crystal slabs with periodic stepped resonators. J Phys D Appl Phys 44:55401–55409CrossRef
8.
Zurück zum Zitat Fan L, Zhang S-Y, Zhang H (2011) Transmission characteristics of double negativity acoustic metamaterials studied with fluid impedance theory. J Acoust Soc Am 129:2483CrossRef Fan L, Zhang S-Y, Zhang H (2011) Transmission characteristics of double negativity acoustic metamaterials studied with fluid impedance theory. J Acoust Soc Am 129:2483CrossRef
9.
Zurück zum Zitat Norris A (2011) Periodic metal structures for acoustic wave control. J Acoust Soc Am 130:2359CrossRef Norris A (2011) Periodic metal structures for acoustic wave control. J Acoust Soc Am 130:2359CrossRef
10.
Zurück zum Zitat Chesnais C, Boutin C, Hans S (2012) Effects of the local resonance on the wave propagation in periodic frame structures: generalized Newtonian mechanics. J Acoust Soc Am 132:2873–2886CrossRef Chesnais C, Boutin C, Hans S (2012) Effects of the local resonance on the wave propagation in periodic frame structures: generalized Newtonian mechanics. J Acoust Soc Am 132:2873–2886CrossRef
11.
Zurück zum Zitat Riaz A, Banerjee S (2013) Wave propagation in metamaterial using multiscale resonators by creating local anisotropy. Int J Mod Eng 13:9 Riaz A, Banerjee S (2013) Wave propagation in metamaterial using multiscale resonators by creating local anisotropy. Int J Mod Eng 13:9
12.
Zurück zum Zitat Watts L (1992) Cochlear mechanics: analysis and analog VLSI. Ph.D. thesis, California Institute of Technology Watts L (1992) Cochlear mechanics: analysis and analog VLSI. Ph.D. thesis, California Institute of Technology
13.
Zurück zum Zitat Bekesy GV (1989) Experiments in hearing. McGraw-Hill, New York Bekesy GV (1989) Experiments in hearing. McGraw-Hill, New York
14.
Zurück zum Zitat Neely ST (1977) Mathematical models of the mechanics of the Cochlea. California Institute of Technology Neely ST (1977) Mathematical models of the mechanics of the Cochlea. California Institute of Technology
16.
Zurück zum Zitat Allen JB, Sondhi MM (1979) Cochlear macromechanics: time domain solutions. J Acoust Soc Am 66:123–132CrossRefMATH Allen JB, Sondhi MM (1979) Cochlear macromechanics: time domain solutions. J Acoust Soc Am 66:123–132CrossRefMATH
17.
Zurück zum Zitat Kolston PJ (1989) Towards a better understanding of cochlear mechanics: a new cochlear model. University of Canterbury Kolston PJ (1989) Towards a better understanding of cochlear mechanics: a new cochlear model. University of Canterbury
18.
Zurück zum Zitat Chen F, Cohen HI, Bifano TG, Castle J, Fortin J, Kapusta C, Mountain DC, Zosuls A, Hubbard AE (2006) A hydromechanical biomimetic cochlea: experiments and models. J Acoust Soc Am 119:394–405CrossRef Chen F, Cohen HI, Bifano TG, Castle J, Fortin J, Kapusta C, Mountain DC, Zosuls A, Hubbard AE (2006) A hydromechanical biomimetic cochlea: experiments and models. J Acoust Soc Am 119:394–405CrossRef
19.
Zurück zum Zitat Tanaka K, Abe M, Ando S (1998) A novel mechanical cochlea “Fishbone” with dual sensor/actuator characteristics. IEEE/ASME Trans Mechatron 3:98–105CrossRef Tanaka K, Abe M, Ando S (1998) A novel mechanical cochlea “Fishbone” with dual sensor/actuator characteristics. IEEE/ASME Trans Mechatron 3:98–105CrossRef
20.
Zurück zum Zitat Wittbrodt MJ, Steele CR, Puria S (2006) Developing a physical model of the human cochlea using micro-fabrication methods. Audiol Neurotol 11:104–112CrossRef Wittbrodt MJ, Steele CR, Puria S (2006) Developing a physical model of the human cochlea using micro-fabrication methods. Audiol Neurotol 11:104–112CrossRef
21.
Zurück zum Zitat White RD, Grosh K (2005) Microengineered hydromechanical cochlear model. Proc Natl Acad Sci USA 102:1296–1301CrossRef White RD, Grosh K (2005) Microengineered hydromechanical cochlear model. Proc Natl Acad Sci USA 102:1296–1301CrossRef
22.
Zurück zum Zitat Shintaku H, Kobayashi T, Zusho K, Kotera H, Kawano S (2013) Wide-range frequency selectivity in an acoustic sensor fabricated using a microbeam array with non-uniform thickness. J Micromech Microeng 23:115014CrossRef Shintaku H, Kobayashi T, Zusho K, Kotera H, Kawano S (2013) Wide-range frequency selectivity in an acoustic sensor fabricated using a microbeam array with non-uniform thickness. J Micromech Microeng 23:115014CrossRef
23.
Zurück zum Zitat Tanujaya H, Shintaku H, Kitagawa D, Adianto S, Kawano S (2013) Experimental and analytical study approach of Artificial basilar membrane prototype (ABMP). J Eng Technol Sci 45:61–72 Tanujaya H, Shintaku H, Kitagawa D, Adianto S, Kawano S (2013) Experimental and analytical study approach of Artificial basilar membrane prototype (ABMP). J Eng Technol Sci 45:61–72
Metadaten
Titel
Bio-Inspired Design of a Multi-scale Pass Band Frequency Sensor Using Local Resonance Phenomena
verfasst von
Riaz Ahmed
Sourav Banerjee
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-06989-0_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.