Skip to main content

2011 | OriginalPaper | Buchkapitel

7. Bioceramics in Tissue Engineering

verfasst von : Yunzhi Yang, Yunqing Kang, Milan Sen, Sangwon Park

Erschienen in: Biomaterials for Tissue Engineering Applications

Verlag: Springer Vienna

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter is focused on the classification of bioceramics and their medical applications. Alumina, zirconia or alumina–zirconia-based composite bioinert ceramics are currently used as femoral heads, acetabular cups for hip replacement, and dental implants. Nano-structured bioinert ceramics with significantly improved toughness and stability are desirable for future clinical needs. Bioactive glass and calcium phosphates are being investigated as bone fillers, bone cements, coatings, and scaffolds for bone repair and regeneration. Cell-laden biodegradable bioceramic/biopolymer hybrid composites mimicking the bony hierarchical structure present the desired properties for bone substitution and tissue engineering and are creating a new generation of regeneration materials. Bioceramics for dental and cancer treatment are also introduced in this chapter. Further challenges in bioceramic scaffold fabrication for tissue engineering are also discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kalita SJ, Bhardwaj A, Bhatt HA. Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater Sci Eng C 2007;27:441–49. Kalita SJ, Bhardwaj A, Bhatt HA. Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater Sci Eng C 2007;27:441–49.
2.
Zurück zum Zitat Chevalier J, Gremillard L. Ceramics for medical applications: A picture for the next 20 years. J Eur Ceram Soc 2009;29:1245–55. Chevalier J, Gremillard L. Ceramics for medical applications: A picture for the next 20 years. J Eur Ceram Soc 2009;29:1245–55.
3.
Zurück zum Zitat Rieger W. Ceramics in orthopedics – 30 years of evolution and experience, in World tribology forum in arthroplasty, C Rieker, S Oberholzer and U Wyss, eds. Hans Huber Verlag, Bern, Suisse, 2001 Rieger W. Ceramics in orthopedics – 30 years of evolution and experience, in World tribology forum in arthroplasty, C Rieker, S Oberholzer and U Wyss, eds. Hans Huber Verlag, Bern, Suisse, 2001
4.
Zurück zum Zitat Miller JA, Talton JD, Bhatia S. Total hip replacement: metal-on-metal systems. In Clinical performance of Skeletal Prostheses, LL Hench and J Wilson, eds. Chapman and Hall, London, 1996, pp. 41–56. Miller JA, Talton JD, Bhatia S. Total hip replacement: metal-on-metal systems. In Clinical performance of Skeletal Prostheses, LL Hench and J Wilson, eds. Chapman and Hall, London, 1996, pp. 41–56.
5.
Zurück zum Zitat Hulbert S. The use of alumina and zirconia in surgical implants, in An introduction to bioceramics, LL Hench and Wilson J, eds. World Scientific, Singapore,1993, pp. 125–38 Hulbert S. The use of alumina and zirconia in surgical implants, in An introduction to bioceramics, LL Hench and Wilson J, eds. World Scientific, Singapore,1993, pp. 125–38
6.
Zurück zum Zitat Schmalzried TP, Kwong LM, Jasty M, et al. The mechanism of loosening of cementedacetabular components in total hip artroplasty. Analysis of specimens retrieved at autopsy. Clin Orthop 1992;274:60–78. Schmalzried TP, Kwong LM, Jasty M, et al. The mechanism of loosening of cementedacetabular components in total hip artroplasty. Analysis of specimens retrieved at autopsy. Clin Orthop 1992;274:60–78.
7.
Zurück zum Zitat Schmalzried TP, Guttmann D, Grecula M, Amstutz HC. The relationship between the design, position and articular wear of acetabular components inserted without cement and the development of pelvic osteolysis. J Bone Joint Surg 1994;76A:677–88. Schmalzried TP, Guttmann D, Grecula M, Amstutz HC. The relationship between the design, position and articular wear of acetabular components inserted without cement and the development of pelvic osteolysis. J Bone Joint Surg 1994;76A:677–88.
8.
Zurück zum Zitat Manley MT, Serekian P. Wear debris. Clin Orthop Related Res 1994;298:137–46. Manley MT, Serekian P. Wear debris. Clin Orthop Related Res 1994;298:137–46.
9.
Zurück zum Zitat Jahnke K, Plester D, Heimke G. Experiences with Al2O3-ceramic middle ear implants, Biomaterials 1983; 4:137–8. Jahnke K, Plester D, Heimke G. Experiences with Al2O3-ceramic middle ear implants, Biomaterials 1983; 4:137–8.
10.
Zurück zum Zitat Boutin P, Christel P, Dorlot J-M, Meunier A, de Roquancourt A, Blanquaert D, Herman S, Sedel L, Witvoet J. The use of dense alumina–alumina ceramic combination in total hip replacement. J Biomed Mater Res 1988;22:1203–32. Boutin P, Christel P, Dorlot J-M, Meunier A, de Roquancourt A, Blanquaert D, Herman S, Sedel L, Witvoet J. The use of dense alumina–alumina ceramic combination in total hip replacement. J Biomed Mater Res 1988;22:1203–32.
11.
Zurück zum Zitat Campbell P, Doorn P, Dorey F, Amstutz H. Wear and morphology of ultra-high molecular weight polyethylene wear particles from total hip replacements. Proc Inst Mech Eng H 1996;210:167–74. Campbell P, Doorn P, Dorey F, Amstutz H. Wear and morphology of ultra-high molecular weight polyethylene wear particles from total hip replacements. Proc Inst Mech Eng H 1996;210:167–74.
12.
Zurück zum Zitat Goodman S, Aspenberg P, Song Y, Knoblich G, Huie P, Regula D, Lidgren L. Tissue ingrowth and differentiation in the boneharvest chamber in the presence of cobalt chromium alloy and high density polyethylene particles. J Bone Joint Surg 1995;77A:1025–35. Goodman S, Aspenberg P, Song Y, Knoblich G, Huie P, Regula D, Lidgren L. Tissue ingrowth and differentiation in the boneharvest chamber in the presence of cobalt chromium alloy and high density polyethylene particles. J Bone Joint Surg 1995;77A:1025–35.
13.
Zurück zum Zitat Howie DW, Vernon-Roberts B, Oakshott R, Manthey B. A rat model of resorption of bone at the cement–bone interface in the presence of polyethylene wear particles. J Bone Joint Surg 1988;70A:257–63. Howie DW, Vernon-Roberts B, Oakshott R, Manthey B. A rat model of resorption of bone at the cement–bone interface in the presence of polyethylene wear particles. J Bone Joint Surg 1988;70A:257–63.
14.
Zurück zum Zitat Willert HG, Semlitsch M. Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mater Res 1977;11:157–64. Willert HG, Semlitsch M. Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mater Res 1977;11:157–64.
15.
Zurück zum Zitat Schmalzried TP, Jasty M, Harris WH. Periprosthetic bone loss in total hip arthroplasty: polyethylene wear debris and the concept of the effective joint space. J Bone Joint Surg 1992;74A: 849–63. Schmalzried TP, Jasty M, Harris WH. Periprosthetic bone loss in total hip arthroplasty: polyethylene wear debris and the concept of the effective joint space. J Bone Joint Surg 1992;74A: 849–63.
16.
Zurück zum Zitat Amstutz HC, Campbell P, Kossovsky N, Clarke IC. Mechanism and clinical significance of wear debris-induced osteolysis. Clin Orthop 1992;276:7–18. Amstutz HC, Campbell P, Kossovsky N, Clarke IC. Mechanism and clinical significance of wear debris-induced osteolysis. Clin Orthop 1992;276:7–18.
17.
Zurück zum Zitat Murray DW, Rushton N. Macrophages stimulate bone resorption when they phagocytose particles. J Bone Joint Surg 1990;72B:988–92. Murray DW, Rushton N. Macrophages stimulate bone resorption when they phagocytose particles. J Bone Joint Surg 1990;72B:988–92.
18.
Zurück zum Zitat Jiranek WA, Machado M, Jasty M. Production of cytokines around loosened cemented acetabular components. Analysis with immunohistochemical techniques and in situ hybridization. J Bone Joint Surg 1993;75A:863–79. Jiranek WA, Machado M, Jasty M. Production of cytokines around loosened cemented acetabular components. Analysis with immunohistochemical techniques and in situ hybridization. J Bone Joint Surg 1993;75A:863–79.
19.
Zurück zum Zitat Hamadouche M, Boutin P, Daussange J, Bolander ME, Sedel L, Alumina-on-alumina total hip arthroplasty: a minimum 18.5-years follow-up study. J Bone Joint Surg Am 2002;84:69–77. Hamadouche M, Boutin P, Daussange J, Bolander ME, Sedel L, Alumina-on-alumina total hip arthroplasty: a minimum 18.5-years follow-up study. J Bone Joint Surg Am 2002;84:69–77.
20.
Zurück zum Zitat Yoo JJ, Kim YM, Yoon KS, Koo KH, Song WS, Kim HJ. Alumina-on-alumina total hip arthroplasty a five-year minimum follow-up study. J Bone Joint Surg Am 2005;87:530–5. Yoo JJ, Kim YM, Yoon KS, Koo KH, Song WS, Kim HJ. Alumina-on-alumina total hip arthroplasty a five-year minimum follow-up study. J Bone Joint Surg Am 2005;87:530–5.
21.
Zurück zum Zitat Dorlot JM. Long-term effects of alumina components in total hip prostheses. Clin Orthop Relat Res 1992;282:47–52. Dorlot JM. Long-term effects of alumina components in total hip prostheses. Clin Orthop Relat Res 1992;282:47–52.
22.
Zurück zum Zitat Catelas I, Petit A, Marchand R, Zukor DJ, Yahia L, Huk OL. Cytotoxicity and macrophage cytokine release induced by ceramic and polyethylene particles in vitro. J Bone Joint Surg Br 1999; 81:516–21. Catelas I, Petit A, Marchand R, Zukor DJ, Yahia L, Huk OL. Cytotoxicity and macrophage cytokine release induced by ceramic and polyethylene particles in vitro. J Bone Joint Surg Br 1999; 81:516–21.
23.
Zurück zum Zitat Villermaux F. Zirconia-alumina as the new generation of ceramic-ceramic THR: wear performance evaluation including extreme life conditions. Proceedings of 6th World Biomaterials Congress, Workshop on Zirconia Femoral Heads for Total Hip Prostheses, Kamuela, Hawaii, USA: Society for Biomaterials, 2000 Villermaux F. Zirconia-alumina as the new generation of ceramic-ceramic THR: wear performance evaluation including extreme life conditions. Proceedings of 6th World Biomaterials Congress, Workshop on Zirconia Femoral Heads for Total Hip Prostheses, Kamuela, Hawaii, USA: Society for Biomaterials, 2000
24.
Zurück zum Zitat Lawn B. Fracture of brittle solids, Cambridge solid state science series 2nd ed. UK: Cambridge university press, 1993:378 Lawn B. Fracture of brittle solids, Cambridge solid state science series 2nd ed. UK: Cambridge university press, 1993:378
25.
Zurück zum Zitat Campbell P, Shen FW, McKellop H. Biologic and tribologic considerations of alternative bearing surfaces. Clin Orthop 2004;418:98–111 Campbell P, Shen FW, McKellop H. Biologic and tribologic considerations of alternative bearing surfaces. Clin Orthop 2004;418:98–111
26.
Zurück zum Zitat Heros R, Willmann G. Ceramics in total hip arthroplasty: history, mechanical properties, clinical results and current manufacturing state of the art Semin Arthroplasty 1998; 9:114–22. Heros R, Willmann G. Ceramics in total hip arthroplasty: history, mechanical properties, clinical results and current manufacturing state of the art Semin Arthroplasty 1998; 9:114–22.
27.
Zurück zum Zitat Yoon TR, Rowe SM, Jung ST, Seon KJ, Maloney WJ. Osteolysis in association with a total hip arthroplasty with ceramic bearing surfaces, J Bone Joint Surg 1998;80A:1459–68. Yoon TR, Rowe SM, Jung ST, Seon KJ, Maloney WJ. Osteolysis in association with a total hip arthroplasty with ceramic bearing surfaces, J Bone Joint Surg 1998;80A:1459–68.
28.
Zurück zum Zitat Mahoney OM, Dimon III JH. Unsatisfactory results with a ceramic total hip prosthesis. J Bone Joint Surg 1990;72A:663–671 Mahoney OM, Dimon III JH. Unsatisfactory results with a ceramic total hip prosthesis. J Bone Joint Surg 1990;72A:663–671
29.
Zurück zum Zitat Wirganowicz PZ, Thomas BJ. Massive osteolysis after ceramic on ceramic total hip arthroplasty. Clin Orthop Relat Res 1997;338:100–4. Wirganowicz PZ, Thomas BJ. Massive osteolysis after ceramic on ceramic total hip arthroplasty. Clin Orthop Relat Res 1997;338:100–4.
30.
Zurück zum Zitat Garcia-Cimbrelo E, Martinez-Sayanes JM, Minuesa A, Munuera L. Mittelmeier ceramic-on-ceramic hip prosthesis after 10 years. J Arthroplasty 1996;11:773–81. Garcia-Cimbrelo E, Martinez-Sayanes JM, Minuesa A, Munuera L. Mittelmeier ceramic-on-ceramic hip prosthesis after 10 years. J Arthroplasty 1996;11:773–81.
31.
Zurück zum Zitat Mittelmeier H, Heisel J. Sixteen-years’ experience with ceramic hip prostheses. Clin Orthop 1992;282:64–72. Mittelmeier H, Heisel J. Sixteen-years’ experience with ceramic hip prostheses. Clin Orthop 1992;282:64–72.
32.
Zurück zum Zitat Willmann G. Ceramic femoral head retrieval data, Clin Orthop 2000;379:173–7. Willmann G. Ceramic femoral head retrieval data, Clin Orthop 2000;379:173–7.
33.
Zurück zum Zitat Piconi C, Maccauro G. Zirconia as a ceramic biomaterial: a review. Biomaterials 1999;20:1–25. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial: a review. Biomaterials 1999;20:1–25.
34.
Zurück zum Zitat Nasser S. Campbell PA, Kilgus D, Kossovsky N, Amstutz HC. Cementless total joint arthroplasty prostheses with titanium–alloy articular surfaces. A human retrieval analysis. Clin Orthop Relat Res 1990; 261:171–85. Nasser S. Campbell PA, Kilgus D, Kossovsky N, Amstutz HC. Cementless total joint arthroplasty prostheses with titanium–alloy articular surfaces. A human retrieval analysis. Clin Orthop Relat Res 1990; 261:171–85.
35.
Zurück zum Zitat Sabokbar A, Fujikawa Y, Murray DW, Athanasou NA. Bisphosphonates in bone cement inhibit PMMA particle induced bone resorption. Ann Rheum Dis 1998;57:614–8. Sabokbar A, Fujikawa Y, Murray DW, Athanasou NA. Bisphosphonates in bone cement inhibit PMMA particle induced bone resorption. Ann Rheum Dis 1998;57:614–8.
36.
Zurück zum Zitat Ingham E, Green TR, Stone MH, Kowalski R, Watkins N, Fisher J. Production of TNF-alpha and bone resorbing activity by macrophages in response to different types of bone cement particles. Biomaterials 2000; 21: 1005–13. Ingham E, Green TR, Stone MH, Kowalski R, Watkins N, Fisher J. Production of TNF-alpha and bone resorbing activity by macrophages in response to different types of bone cement particles. Biomaterials 2000; 21: 1005–13.
37.
Zurück zum Zitat Horowitz SM, Purdon MA. Mediator interactions in macrophage/particulate bone resorption. J Biomed Mater Res 1995;29:477–84. Horowitz SM, Purdon MA. Mediator interactions in macrophage/particulate bone resorption. J Biomed Mater Res 1995;29:477–84.
38.
Zurück zum Zitat Chevalier J. What future for zirconia as a biomaterial? Biomaterials 2006;27:535–43. Chevalier J. What future for zirconia as a biomaterial? Biomaterials 2006;27:535–43.
39.
Zurück zum Zitat Gowen M, Wood DD, Ihrie EJ, McGuire MK, Russell RG. An interleukin 1 like factor stimulates bone resorption in vitro. Nature 1983;306:378–80. Gowen M, Wood DD, Ihrie EJ, McGuire MK, Russell RG. An interleukin 1 like factor stimulates bone resorption in vitro. Nature 1983;306:378–80.
40.
Zurück zum Zitat Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumor necrosis factors. Nature 1986;319:516–18. Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumor necrosis factors. Nature 1986;319:516–18.
41.
Zurück zum Zitat Chevalier J, Gremillard L, Deville S. Low-temperature degradation of zirconia and implications for biomedical implants. Annu Rev Mater Res 2007;37:1–32. Chevalier J, Gremillard L, Deville S. Low-temperature degradation of zirconia and implications for biomedical implants. Annu Rev Mater Res 2007;37:1–32.
42.
Zurück zum Zitat Schubert H, Frey F. Stability of Y-TZP during hydrothermal treatment: neutron experiments and stability considerations. J Eur Ceram Soc 2005;25:1597–602. Schubert H, Frey F. Stability of Y-TZP during hydrothermal treatment: neutron experiments and stability considerations. J Eur Ceram Soc 2005;25:1597–602.
43.
Zurück zum Zitat Affatato S, Goldoni M, Testoni M, Toni A. Mixed-oxides prosthetic ceramic ball heads Part 3: effect of the ZrO2 fraction on the wear of ceramic on ceramic hip joint prostheses. A long-term in vitro wear study. Biomaterials 2001; 22:717–23. Affatato S, Goldoni M, Testoni M, Toni A. Mixed-oxides prosthetic ceramic ball heads Part 3: effect of the ZrO2 fraction on the wear of ceramic on ceramic hip joint prostheses. A long-term in vitro wear study. Biomaterials 2001; 22:717–23.
44.
Zurück zum Zitat De Aza AH, Chevalier J, Fantozzi G, Schehl M, Torrecillas R. Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials 2002; 23:937–45. De Aza AH, Chevalier J, Fantozzi G, Schehl M, Torrecillas R. Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials 2002; 23:937–45.
45.
Zurück zum Zitat Fabris S, Paxton AT, Finnis MW. A stabilization mechanism of zirconia based on oxygen vacancies only. Acta Mater 2002;50:5171–8. Fabris S, Paxton AT, Finnis MW. A stabilization mechanism of zirconia based on oxygen vacancies only. Acta Mater 2002;50:5171–8.
46.
Zurück zum Zitat Tsipas SA. Effect of dopants on the phase stability of zirconia-based plasma sprayed thermal barrier coatings. J Eur Ceramic Soc 2010;30:61–72. Tsipas SA. Effect of dopants on the phase stability of zirconia-based plasma sprayed thermal barrier coatings. J Eur Ceramic Soc 2010;30:61–72.
47.
Zurück zum Zitat Porter DL, Heuer AH. Mechanism of toughening partially stabilized zirconia PSZ. J Am Ceram Soc 1977; 60:183–4. Porter DL, Heuer AH. Mechanism of toughening partially stabilized zirconia PSZ. J Am Ceram Soc 1977; 60:183–4.
48.
Zurück zum Zitat Virkar AV, Matsumoto RLK. Ferroelastic domain switching as a toughening mechanism in tetragonal zirconia. J Am Ceram Soc 1986;69:224–6. Virkar AV, Matsumoto RLK. Ferroelastic domain switching as a toughening mechanism in tetragonal zirconia. J Am Ceram Soc 1986;69:224–6.
49.
Zurück zum Zitat Mehta K, Virkar AV. Fracture mechanisms in ferroelectric-ferroelastic lead zirconate titanate Zr:Ti = 054:046; Ceramics. J Am Ceram Soc 1990;73:567–74. Mehta K, Virkar AV. Fracture mechanisms in ferroelectric-ferroelastic lead zirconate titanate Zr:Ti = 054:046; Ceramics. J Am Ceram Soc 1990;73:567–74.
50.
Zurück zum Zitat Nawa M, Nakamoto S, Sekino T, Niihara K. Tough and strong Ce-TZP/Alumina nanocomposites doped with titania. Ceram Int 1998;24:497–506 Nawa M, Nakamoto S, Sekino T, Niihara K. Tough and strong Ce-TZP/Alumina nanocomposites doped with titania. Ceram Int 1998;24:497–506
51.
Zurück zum Zitat Fischer J, Stawarczyk B, Trottmann A, Hämmerle CHF. Impact of thermal properties of veneering ceramics on the fracture load of layered Ce-TZP/A nanocomposite frameworks. Dent Mater 2009;25:326–30. Fischer J, Stawarczyk B, Trottmann A, Hämmerle CHF. Impact of thermal properties of veneering ceramics on the fracture load of layered Ce-TZP/A nanocomposite frameworks. Dent Mater 2009;25:326–30.
52.
Zurück zum Zitat Fischer J, Stawarczyk B. Compatibility of machined Ce-TZP/Al2O3 nanocomposite and a veneering ceramic. Dent Mater 2007;23:1500–5. Fischer J, Stawarczyk B. Compatibility of machined Ce-TZP/Al2O3 nanocomposite and a veneering ceramic. Dent Mater 2007;23:1500–5.
53.
Zurück zum Zitat WU S, Brook RJ. Sintering additives for zirconia ceramics. Trans J Br Ceram Soc 1983;82:260–4. WU S, Brook RJ. Sintering additives for zirconia ceramics. Trans J Br Ceram Soc 1983;82:260–4.
54.
Zurück zum Zitat Brito-Chaparro JA, Aguilar-Elguezabal A, Echeberria J, Bocanegra-Bernal MH. Using high-purity MgO nanopowder as a stabilizer in two different particle size monoclinic ZrO2: its influence on the fracture toughness. Mater Chem Phys 2009;114:407–14. Brito-Chaparro JA, Aguilar-Elguezabal A, Echeberria J, Bocanegra-Bernal MH. Using high-purity MgO nanopowder as a stabilizer in two different particle size monoclinic ZrO2: its influence on the fracture toughness. Mater Chem Phys 2009;114:407–14.
55.
Zurück zum Zitat Yang Y, Liu Y, Park S, Kim H, Lee K, Koh J, Nanoscale bioactive surfaces and endosseous implantology, in Nanoscience in Biomedicine, D Shi, ed. Tsinghua University Press, Beijing and Springer-Verlag GmbH, Berlin, Heidelerg, 2009, pp. 428–50 Yang Y, Liu Y, Park S, Kim H, Lee K, Koh J, Nanoscale bioactive surfaces and endosseous implantology, in Nanoscience in Biomedicine, D Shi, ed. Tsinghua University Press, Beijing and Springer-Verlag GmbH, Berlin, Heidelerg, 2009, pp. 428–50
56.
Zurück zum Zitat Yang Y, Ran J, Zheng C. Preparation of DLC/stainless steel gradient film materials using magnetron sputtering plasma method, in 13th International symposium on plasma chemistry, symposium proceedings, C Wu, ed. Peking University Press, Beijing, China, III, 1997, pp. 1232–7. Yang Y, Ran J, Zheng C. Preparation of DLC/stainless steel gradient film materials using magnetron sputtering plasma method, in 13th International symposium on plasma chemistry, symposium proceedings, C Wu, ed. Peking University Press, Beijing, China, III, 1997, pp. 1232–7.
57.
Zurück zum Zitat Hench LL. Bioceramic. J Am Ceram Soc 1998;81:1705–28. Hench LL. Bioceramic. J Am Ceram Soc 1998;81:1705–28.
58.
Zurück zum Zitat Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc 1991;74:1487–510. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc 1991;74:1487–510.
59.
Zurück zum Zitat Bromer H, Deutscher K, Blencke B, Pfeil E, Strunz V. Properties of the bioactive implant materials ‘Ceravital’. Sci Ceram 1977;9:219–25. Bromer H, Deutscher K, Blencke B, Pfeil E, Strunz V. Properties of the bioactive implant materials ‘Ceravital’. Sci Ceram 1977;9:219–25.
60.
Zurück zum Zitat Gross UM, Strunz V. The anchoring of glass ceramics of different solubility in the femur of the rat. J Biomed Mater Res 1980;14:607–18. Gross UM, Strunz V. The anchoring of glass ceramics of different solubility in the femur of the rat. J Biomed Mater Res 1980;14:607–18.
61.
Zurück zum Zitat Kokubo T, Shigematsu M, Nagashima Y, Tashiro M, Nakamura T, Yamamuro T. Apatite- and wollastonite-containing glass-ceramics for prosthetic applications. Bull Inst Chem Res Kyoto Univ 1982;60:260–8. Kokubo T, Shigematsu M, Nagashima Y, Tashiro M, Nakamura T, Yamamuro T. Apatite- and wollastonite-containing glass-ceramics for prosthetic applications. Bull Inst Chem Res Kyoto Univ 1982;60:260–8.
62.
Zurück zum Zitat Gil-Albarova J, Salinas A, Bueno-Lozano AL, Román J, Aldini-Nicolo N, García-Barea A, Giavaresi G, Fini M, Giardini R, Vallet-Regí M. The in vivo behaviour of a sol–gel glass and a glass-ceramic during critical diaphyseal bone defects healing. Biomaterials 2005;26:4374–82. Gil-Albarova J, Salinas A, Bueno-Lozano AL, Román J, Aldini-Nicolo N, García-Barea A, Giavaresi G, Fini M, Giardini R, Vallet-Regí M. The in vivo behaviour of a sol–gel glass and a glass-ceramic during critical diaphyseal bone defects healing. Biomaterials 2005;26:4374–82.
63.
Zurück zum Zitat Rehman I, Hench LL, Bonfield W, Smith R. Analysis of surface layers on bioactive glasses. Biomaterials 1994;15:865–70. Rehman I, Hench LL, Bonfield W, Smith R. Analysis of surface layers on bioactive glasses. Biomaterials 1994;15:865–70.
64.
Zurück zum Zitat Gheysen G, Ducheyne P, Hench LL, de Meester P. Bioglass composites: a potential material for dental application. Biomaterials 1983;4:81-4. Gheysen G, Ducheyne P, Hench LL, de Meester P. Bioglass composites: a potential material for dental application. Biomaterials 1983;4:81-4.
65.
Zurück zum Zitat Arcos D, del Real RP, Vallet-Regí M. A novel bioactive and magnetic biphasic material. Biomaterials 2002;23:2151–8. Arcos D, del Real RP, Vallet-Regí M. A novel bioactive and magnetic biphasic material. Biomaterials 2002;23:2151–8.
66.
Zurück zum Zitat Ruiz E, Serrano MC, Arcos D, Vallet-Regí M. Glass-glass ceramic thermoseeds for hyperthermic treatment of bone tumors. J Biomed Mater Res 2006;79A:533–43. Ruiz E, Serrano MC, Arcos D, Vallet-Regí M. Glass-glass ceramic thermoseeds for hyperthermic treatment of bone tumors. J Biomed Mater Res 2006;79A:533–43.
67.
Zurück zum Zitat Jarcho M. Calcium phosphate as biomaterials Properties and applications. Dent Clin North Am 1986;30:25–48. Jarcho M. Calcium phosphate as biomaterials Properties and applications. Dent Clin North Am 1986;30:25–48.
68.
Zurück zum Zitat Kent JN, Quinn JH, Zide MF, Finge IM, Jarcho M, Rothstein SS. Correction of alveolar ridge deficiencies with nonresorbable hydroxylapatite. J Am Dent Assoc 1982;105:993–1001. Kent JN, Quinn JH, Zide MF, Finge IM, Jarcho M, Rothstein SS. Correction of alveolar ridge deficiencies with nonresorbable hydroxylapatite. J Am Dent Assoc 1982;105:993–1001.
69.
Zurück zum Zitat Jarcho M. Calcium phosphate ceramics as hard tissue prosthetic. Clin Orthop 1981;157:259–60. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetic. Clin Orthop 1981;157:259–60.
70.
Zurück zum Zitat Wang JC, Ko CL, Hung CC, Tyan YC, Lai CH, Chen WC, Wang CK. Deriving fast setting properties of tetracalcium phosphate/dicalcium phosphate anhydrous bone cement with nanocrystallites on the reactant surfaces. J Dent 2010;38:158–65. Wang JC, Ko CL, Hung CC, Tyan YC, Lai CH, Chen WC, Wang CK. Deriving fast setting properties of tetracalcium phosphate/dicalcium phosphate anhydrous bone cement with nanocrystallites on the reactant surfaces. J Dent 2010;38:158–65.
71.
Zurück zum Zitat Tsai CH, Lin RM, Ju CP, Lin JHC. Bioresorption behavior of tetracalcium phosphate-derived calcium phosphate cement implanted in femur of rabbits. Biomaterials 2008;29:984–93. Tsai CH, Lin RM, Ju CP, Lin JHC. Bioresorption behavior of tetracalcium phosphate-derived calcium phosphate cement implanted in femur of rabbits. Biomaterials 2008;29:984–93.
72.
Zurück zum Zitat Chow LC, Markovic M, Frukhtbeyn SA, Takagi S. Hydrolysis of tetracalcium phosphate under a near-constant-composition condition – effects of pH and particle size. Biomaterials 2005;26:393–401. Chow LC, Markovic M, Frukhtbeyn SA, Takagi S. Hydrolysis of tetracalcium phosphate under a near-constant-composition condition – effects of pH and particle size. Biomaterials 2005;26:393–401.
73.
Zurück zum Zitat Guo DG, Xu KW, Han Y. Influence of cooling modes on purity of solid-state synthesized tetracalcium phosphate. Mater Sci Eng B 2005;116:175–81. Guo DG, Xu KW, Han Y. Influence of cooling modes on purity of solid-state synthesized tetracalcium phosphate. Mater Sci Eng B 2005;116:175–81.
74.
Zurück zum Zitat Blom EJ, Klein-Nulend J, Wolke JGC, Kurashina K, van Waas MAJ, Burger EH. Transforming growth factor-β1 incorporation in an α-tricalcium phosphate/dicalcium phosphate dihydrate/tetracalcium phosphate monoxide cement: release characteristics and physicochemical properties. Biomaterials 2002;23:1261–8. Blom EJ, Klein-Nulend J, Wolke JGC, Kurashina K, van Waas MAJ, Burger EH. Transforming growth factor-β1 incorporation in an α-tricalcium phosphate/dicalcium phosphate dihydrate/tetracalcium phosphate monoxide cement: release characteristics and physicochemical properties. Biomaterials 2002;23:1261–8.
75.
Zurück zum Zitat Tami AE, Leitner MM, Baucke MG, Mueller TL, Harry van Lenthe G, Müller Rh, Ito K. Hydroxyapatite particles maintain peri-implant bone mantle during osseointegration in osteoporotic bone. Bone 2009; 45:1117–24. Tami AE, Leitner MM, Baucke MG, Mueller TL, Harry van Lenthe G, Müller Rh, Ito K. Hydroxyapatite particles maintain peri-implant bone mantle during osseointegration in osteoporotic bone. Bone 2009; 45:1117–24.
76.
Zurück zum Zitat Sanosh KP, Chu MC, Balakrishnan A, Lee YJ, Kim TN, Cho SJ. Synthesis of nano hydroxyapatite powder that simulate teeth particle morphology and composition. Curr Appl Phys 2009;9:1459–62. Sanosh KP, Chu MC, Balakrishnan A, Lee YJ, Kim TN, Cho SJ. Synthesis of nano hydroxyapatite powder that simulate teeth particle morphology and composition. Curr Appl Phys 2009;9:1459–62.
77.
Zurück zum Zitat Langhorst SE, O’Donnell JNR, Skrtic D. In vitro remineralization of enamel by polymeric amorphous calcium phosphate composite: Quantitative microradiographic study. Dent Mater 2009;25:884–91. Langhorst SE, O’Donnell JNR, Skrtic D. In vitro remineralization of enamel by polymeric amorphous calcium phosphate composite: Quantitative microradiographic study. Dent Mater 2009;25:884–91.
78.
Zurück zum Zitat Beniash E, Metzler RA, Lam RSK, Gilbert PUPA. Transient amorphous calcium phosphate in forming enamel. J Struct Biol 2009;166:133–43. Beniash E, Metzler RA, Lam RSK, Gilbert PUPA. Transient amorphous calcium phosphate in forming enamel. J Struct Biol 2009;166:133–43.
79.
Zurück zum Zitat Maciejewski M, Brunner TJ, Loher SF, Stark WJ, Baiker A. Phase transitions in amorphous calcium phosphates with different Ca/P ratios. Thermochim Acta 2008;468:75–80. Maciejewski M, Brunner TJ, Loher SF, Stark WJ, Baiker A. Phase transitions in amorphous calcium phosphates with different Ca/P ratios. Thermochim Acta 2008;468:75–80.
80.
Zurück zum Zitat Sanosh KP, Chu M-C, Balakrishnan A, Kim TN, Cho S-J. Sol–gel synthesis of pure nano sized β-tricalcium phosphate crystalline powders. Curr Appl Phys 2010;10:68–71. Sanosh KP, Chu M-C, Balakrishnan A, Kim TN, Cho S-J. Sol–gel synthesis of pure nano sized β-tricalcium phosphate crystalline powders. Curr Appl Phys 2010;10:68–71.
81.
Zurück zum Zitat Bohner M, Luginbühl R, Reber C, Doebelin N, Baroud G, Conforto E. A physical approach to modify the hydraulic reactivity of α-tricalcium phosphate powder. Acta Biomater 2009;5:3524–35. Bohner M, Luginbühl R, Reber C, Doebelin N, Baroud G, Conforto E. A physical approach to modify the hydraulic reactivity of α-tricalcium phosphate powder. Acta Biomater 2009;5:3524–35.
82.
Zurück zum Zitat Le Huec JC, Clément D, Aunoble S, Tournier C, Harmand MF. A brief summary of 15 years of research on beta-tricalcium phosphates. SAS J 2009;3:112–3. Le Huec JC, Clément D, Aunoble S, Tournier C, Harmand MF. A brief summary of 15 years of research on beta-tricalcium phosphates. SAS J 2009;3:112–3.
83.
Zurück zum Zitat Park YM, Ryu SC, Yoon SY, Stevens R, Park HC. Preparation of whisker-shaped hydroxyapatite/β-tricalcium phosphate composite. Mater Chem Phys 2008;109:440–7. Park YM, Ryu SC, Yoon SY, Stevens R, Park HC. Preparation of whisker-shaped hydroxyapatite/β-tricalcium phosphate composite. Mater Chem Phys 2008;109:440–7.
84.
Zurück zum Zitat Ishihara S, Matsumoto T, Onoki T, Sohmura T, Nakahira A. New concept bioceramics composed of octacalcium phosphate OCP; and dicarboxylic acid-intercalated OCP via hydrothermal hot-pressing. Mater Sci Eng C 2009;29:1885–8. Ishihara S, Matsumoto T, Onoki T, Sohmura T, Nakahira A. New concept bioceramics composed of octacalcium phosphate OCP; and dicarboxylic acid-intercalated OCP via hydrothermal hot-pressing. Mater Sci Eng C 2009;29:1885–8.
85.
Zurück zum Zitat Arellano-Jiménez MJ, García-García R, Reyes-Gasga J. Synthesis and hydrolysis of octacalcium phosphate and its characterization by electron microscopy and X-ray diffraction. J Phys Chem Solids 2009;70:390–5. Arellano-Jiménez MJ, García-García R, Reyes-Gasga J. Synthesis and hydrolysis of octacalcium phosphate and its characterization by electron microscopy and X-ray diffraction. J Phys Chem Solids 2009;70:390–5.
86.
Zurück zum Zitat Dekker RJ, de Bruijn JD, Stigter M, Barrere F, Layrolle P, van Blitterswijk CA. Bone tissue engineering on amorphous carbonated apatite and crystalline octacalcium phosphate-coated titanium discs. Biomaterials 2005;26:5231–9. Dekker RJ, de Bruijn JD, Stigter M, Barrere F, Layrolle P, van Blitterswijk CA. Bone tissue engineering on amorphous carbonated apatite and crystalline octacalcium phosphate-coated titanium discs. Biomaterials 2005;26:5231–9.
87.
Zurück zum Zitat Oliveira C, Ferreira A, Rocha F. Dicalcium phosphate dihydrate precipitation: characterization and crystal growth. Chem Eng Res Des 2007;85:1655–61. Oliveira C, Ferreira A, Rocha F. Dicalcium phosphate dihydrate precipitation: characterization and crystal growth. Chem Eng Res Des 2007;85:1655–61.
88.
Zurück zum Zitat Xu JW, Butler IS, Gilson DFR. FT-Raman and high-pressure infrared spectroscopic studies of dicalcium phosphate dihydrate CaHPO4·2H2O; and anhydrous dicalcium phosphate CaHPO4. Spectrochim Acta A Mol Biomol Spectrosc 1999;55:2801–9. Xu JW, Butler IS, Gilson DFR. FT-Raman and high-pressure infrared spectroscopic studies of dicalcium phosphate dihydrate CaHPO4·2H2O; and anhydrous dicalcium phosphate CaHPO4. Spectrochim Acta A Mol Biomol Spectrosc 1999;55:2801–9.
89.
Zurück zum Zitat El Kady AM, Mohamed KR, El-Bassyouni GT. Fabrication, characterization and bioactivity evaluation of calcium pyrophosphate/polymeric biocomposites. Ceram Int 2009;35:2933–42. El Kady AM, Mohamed KR, El-Bassyouni GT. Fabrication, characterization and bioactivity evaluation of calcium pyrophosphate/polymeric biocomposites. Ceram Int 2009;35:2933–42.
90.
Zurück zum Zitat Nicholas BD, Smith II JL, Kellman RM. Calcium pyrophosphate deposition of the temporomandibular joint with massive bony erosion. J Oral Maxillofac Surg 2007;65:2086–9 Nicholas BD, Smith II JL, Kellman RM. Calcium pyrophosphate deposition of the temporomandibular joint with massive bony erosion. J Oral Maxillofac Surg 2007;65:2086–9
91.
Zurück zum Zitat Kasuga T. Bioactive calcium pyrophosphate glasses and glass-ceramics. Acta Biomater 2005;1:55–64. Kasuga T. Bioactive calcium pyrophosphate glasses and glass-ceramics. Acta Biomater 2005;1:55–64.
92.
Zurück zum Zitat Tudan C, Jackson JK, Higo TT, Hampong M, Pelech SL, Burt HM. Calcium pyrophosphate dihydrate crystal associated induction of neutrophil activation and repression of TNF-α-induced apoptosis is mediated by the p38 MAP kinase. Cell Signal 2004;16:211–21. Tudan C, Jackson JK, Higo TT, Hampong M, Pelech SL, Burt HM. Calcium pyrophosphate dihydrate crystal associated induction of neutrophil activation and repression of TNF-α-induced apoptosis is mediated by the p38 MAP kinase. Cell Signal 2004;16:211–21.
93.
Zurück zum Zitat Vallet-Regí M, González-Calbet JM. Calcium phosphates as substitution of bone tissues. Prog Solid State Chem 2004;32:1–31. Vallet-Regí M, González-Calbet JM. Calcium phosphates as substitution of bone tissues. Prog Solid State Chem 2004;32:1–31.
94.
Zurück zum Zitat Schmitz JP, Hollinger JO, Milam SB. Reconstruction of bone using calcium phosphate bone cements: a critical review. J Oral Maxillofac Surg 1999;57:1122–6. Schmitz JP, Hollinger JO, Milam SB. Reconstruction of bone using calcium phosphate bone cements: a critical review. J Oral Maxillofac Surg 1999;57:1122–6.
95.
Zurück zum Zitat Xu JW, Gilson DFR, Butler IS. FT-Raman and high-pressure FT-infrared spectroscopic investigation of monocalcium phosphate monohydrate, CaH2PO4;2H2O. Spectrochim Acta A Mol Biomol Spectrosc 1998;54:1869–78. Xu JW, Gilson DFR, Butler IS. FT-Raman and high-pressure FT-infrared spectroscopic investigation of monocalcium phosphate monohydrate, CaH2PO4;2H2O. Spectrochim Acta A Mol Biomol Spectrosc 1998;54:1869–78.
96.
Zurück zum Zitat Jinawath S, Pongkao D, Suchanek W, Yoshimura M. Hydrothermal synthesis of monetite and hydroxyapatite from monocalcium phosphate monohydrate. Int J Inorg Mater 2001;3:997–1001. Jinawath S, Pongkao D, Suchanek W, Yoshimura M. Hydrothermal synthesis of monetite and hydroxyapatite from monocalcium phosphate monohydrate. Int J Inorg Mater 2001;3:997–1001.
97.
Zurück zum Zitat Huan ZG, Chang J. Novel bioactive composite bone cements based on the β-tricalcium phosphate–monocalcium phosphate monohydrate composite cement system. Acta Biomater 2009;5:1253–64. Huan ZG, Chang J. Novel bioactive composite bone cements based on the β-tricalcium phosphate–monocalcium phosphate monohydrate composite cement system. Acta Biomater 2009;5:1253–64.
98.
Zurück zum Zitat Jung Y, Kim SS, Kim YH, Kim SH, Kim BS, Kim S, Choi CY, Kim SH. A polylactic acid/calcium metaphosphate composite for bone tissue engineering. Biomaterials 2005;26:6314–22 Jung Y, Kim SS, Kim YH, Kim SH, Kim BS, Kim S, Choi CY, Kim SH. A polylactic acid/calcium metaphosphate composite for bone tissue engineering. Biomaterials 2005;26:6314–22
99.
Zurück zum Zitat Driessens FCM. Formation and stability of calcium phosphate in relation to the phase composition of the mineral in calcified tissue, in Bioceramics of Calcium phosphate, K DeGroot, ed. KCRC Press, Boca Raton, Florida, 1983 Driessens FCM. Formation and stability of calcium phosphate in relation to the phase composition of the mineral in calcified tissue, in Bioceramics of Calcium phosphate, K DeGroot, ed. KCRC Press, Boca Raton, Florida, 1983
100.
Zurück zum Zitat Liu DM, Troczynski T, Seng WJT. Water-based sol–gel synthesis of hydroxyapatite: process development. Biomaterials 2001;22:1721–30. Liu DM, Troczynski T, Seng WJT. Water-based sol–gel synthesis of hydroxyapatite: process development. Biomaterials 2001;22:1721–30.
101.
Zurück zum Zitat De Groot K, Klein CPAT, Wolke JGC, Blieck-Hogervorst JMA. Chemistry of calcium phosphate bioceramics, CRC Handbook of Bioactive Ceramics, Calcium Phosphate and Hydroxylapatite Ceramics, vol II. CRC press, Boca Raton, FL, 1990 De Groot K, Klein CPAT, Wolke JGC, Blieck-Hogervorst JMA. Chemistry of calcium phosphate bioceramics, CRC Handbook of Bioactive Ceramics, Calcium Phosphate and Hydroxylapatite Ceramics, vol II. CRC press, Boca Raton, FL, 1990
102.
Zurück zum Zitat Bow JS, Liou SC, Chen SY. Structural characterization of room-temperature synthesized nano-sized β-tricalcium phosphate. Biomaterials 2004;25:3155–61. Bow JS, Liou SC, Chen SY. Structural characterization of room-temperature synthesized nano-sized β-tricalcium phosphate. Biomaterials 2004;25:3155–61.
103.
Zurück zum Zitat Liu HS, Chin TS, Lai LS, Chiu SY, Chung KH, Chang CS, Liu MT. Hydroxyapatite synthesized by a simplified hydrothermal method. Ceram Int 1997;23:19–25. Liu HS, Chin TS, Lai LS, Chiu SY, Chung KH, Chang CS, Liu MT. Hydroxyapatite synthesized by a simplified hydrothermal method. Ceram Int 1997;23:19–25.
104.
Zurück zum Zitat Lim GK, Wang J, Ng SC, Chew CH, Gan LM. Processing of hydroxyapatite via microemulsion and emulsion routes. Biomaterials 1997;18:1433–9. Lim GK, Wang J, Ng SC, Chew CH, Gan LM. Processing of hydroxyapatite via microemulsion and emulsion routes. Biomaterials 1997;18:1433–9.
105.
Zurück zum Zitat Suchanek WL, Shuk P, Byrappa K, Riman RE, TenHuisen KS, Janas VF, Mechanochemical–hydrothermal synthesis of carbonated apatite powders at room temperature. Biomaterials 2002;23:699–710. Suchanek WL, Shuk P, Byrappa K, Riman RE, TenHuisen KS, Janas VF, Mechanochemical–hydrothermal synthesis of carbonated apatite powders at room temperature. Biomaterials 2002;23:699–710.
106.
Zurück zum Zitat Wang F, Li MS, Lu YP, Qi YX. A simple sol–gel technique for preparing hydroxyapatite nanopowders. Mater Lett 2005;59:916–9. Wang F, Li MS, Lu YP, Qi YX. A simple sol–gel technique for preparing hydroxyapatite nanopowders. Mater Lett 2005;59:916–9.
107.
Zurück zum Zitat Shih W, Chen YF, Wang MC, Hon MH. Crystal growth and morphology of the nano-sized hydroxyapatite powders synthesized from CaHPO42H2O and CaCO3 by hydrolysis method. J Cryst Growth 2004;270:211–8. Shih W, Chen YF, Wang MC, Hon MH. Crystal growth and morphology of the nano-sized hydroxyapatite powders synthesized from CaHPO42H2O and CaCO3 by hydrolysis method. J Cryst Growth 2004;270:211–8.
108.
Zurück zum Zitat Guo GS, Sun YX, Wang ZH, Guo HY. Preparation of hydroxyapatite nanoparticles by reverse microemulsion. Ceram Int 2005;31:869–72. Guo GS, Sun YX, Wang ZH, Guo HY. Preparation of hydroxyapatite nanoparticles by reverse microemulsion. Ceram Int 2005;31:869–72.
109.
Zurück zum Zitat Gibson IR, Rehman I, Best SM, Bonfield W. Characterization of the transformation from calcium-deficient apatite to beta-tricalcium phosphate. J Mater Sci Mater Med 2000;12:799–804. Gibson IR, Rehman I, Best SM, Bonfield W. Characterization of the transformation from calcium-deficient apatite to beta-tricalcium phosphate. J Mater Sci Mater Med 2000;12:799–804.
110.
Zurück zum Zitat Oonishi H, Kushitani S, Iwaki H. Comparative bone formation in several kinds of bioceramic granules, in Eighth international symposium on ceramics in medicine, J Wilson, LL Hench, D Greenspan eds. Tokyo, Japan: Elsevier Science Ltd, 1995, pp. 137–144. Oonishi H, Kushitani S, Iwaki H. Comparative bone formation in several kinds of bioceramic granules, in Eighth international symposium on ceramics in medicine, J Wilson, LL Hench, D Greenspan eds. Tokyo, Japan: Elsevier Science Ltd, 1995, pp. 137–144.
111.
Zurück zum Zitat Kivrak N, Tas AC. Synthesis of calcium hydroxyapatite-tricalcium phosphate composite bioceramic powders and their sintering behavior. J Am Ceram Soc 1998;81:2245–52. Kivrak N, Tas AC. Synthesis of calcium hydroxyapatite-tricalcium phosphate composite bioceramic powders and their sintering behavior. J Am Ceram Soc 1998;81:2245–52.
112.
Zurück zum Zitat Okazaki M, Sato M. Computer graphics of hydroxyapatite and β-tricalcium phosphate. Biomaterials 1990;11:573–78. Okazaki M, Sato M. Computer graphics of hydroxyapatite and β-tricalcium phosphate. Biomaterials 1990;11:573–78.
113.
Zurück zum Zitat Sanosh KP, Min-Cheol Chu, Balakrishnan A, Kim TN, Cho SJ. Sol–gel synthesis of pure nano sized b-tricalcium phosphate crystalline powders. Curr Appl Phys 2010;10:68–71. Sanosh KP, Min-Cheol Chu, Balakrishnan A, Kim TN, Cho SJ. Sol–gel synthesis of pure nano sized b-tricalcium phosphate crystalline powders. Curr Appl Phys 2010;10:68–71.
114.
Zurück zum Zitat Lin K, Chang J, Lu J, Wu W, Zeng Y. Properties of β-Ca3PO4;2 bioceramics prepared using nano-size powders. Ceram Int 2007;33:979–85. Lin K, Chang J, Lu J, Wu W, Zeng Y. Properties of β-Ca3PO4;2 bioceramics prepared using nano-size powders. Ceram Int 2007;33:979–85.
115.
Zurück zum Zitat Dean-Mo L, Troczynski T, Tseng WJ. Water-based sol–gel synthesis of hydroxyapatite: process development. Biomaterials 2001;22:1721–30. Dean-Mo L, Troczynski T, Tseng WJ. Water-based sol–gel synthesis of hydroxyapatite: process development. Biomaterials 2001;22:1721–30.
116.
Zurück zum Zitat Pan Y, Huang JL, Shao CY, Preparation of b-TCP with high thermal stability by solid reaction routs. J Mater Sci 2003;38:1049–56. Pan Y, Huang JL, Shao CY, Preparation of b-TCP with high thermal stability by solid reaction routs. J Mater Sci 2003;38:1049–56.
117.
Zurück zum Zitat Liou SC, Chen SY. Transformation mechanism of different chemically precipitated apatitic precursors into b-tricalcium phosphate upon calcinations. Biomaterials 2002;23:4541–7. Liou SC, Chen SY. Transformation mechanism of different chemically precipitated apatitic precursors into b-tricalcium phosphate upon calcinations. Biomaterials 2002;23:4541–7.
118.
Zurück zum Zitat Ishikawa K, Matsuya S, Bioceramics. Compr Struct Integr 2007;9:169–214. Ishikawa K, Matsuya S, Bioceramics. Compr Struct Integr 2007;9:169–214.
119.
Zurück zum Zitat LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med 2003;14:201–9. LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med 2003;14:201–9.
120.
Zurück zum Zitat Yamada S, Heymann D, Bouler JM, Daculsi G. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/β-tricalcium phosphate ratios. Biomaterials 1997;18:1037–41. Yamada S, Heymann D, Bouler JM, Daculsi G. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/β-tricalcium phosphate ratios. Biomaterials 1997;18:1037–41.
121.
Zurück zum Zitat Ruseska G, Fidanceska E, Bossert J. Mechanical and thermalexpansion characteristics of Ca10PO4;6OH;2-Ca3PO4;2. Sci Sintering 38 2006;245–54. Ruseska G, Fidanceska E, Bossert J. Mechanical and thermalexpansion characteristics of Ca10PO4;6OH;2-Ca3PO4;2. Sci Sintering 38 2006;245–54.
122.
Zurück zum Zitat Guha AK, Singh S, Kumaresan R, Nayar S, Sinha A. Mesenchymal cell response to nanosized biphasic calcium phosphate composites. Colloids Surf B Biointerfaces 2009;73:146–51. Guha AK, Singh S, Kumaresan R, Nayar S, Sinha A. Mesenchymal cell response to nanosized biphasic calcium phosphate composites. Colloids Surf B Biointerfaces 2009;73:146–51.
123.
Zurück zum Zitat Rameshbabu N, Prasad Rao K. Microwave synthesis, characterization and in-vitro evaluation of nanostructured biphasic calcium phosphates. Curr Appl Phys 2009;9:S29–S31. Rameshbabu N, Prasad Rao K. Microwave synthesis, characterization and in-vitro evaluation of nanostructured biphasic calcium phosphates. Curr Appl Phys 2009;9:S29–S31.
124.
Zurück zum Zitat Yamada S, Heymann D, Bouler JM, Duculsi G. Osteoclastic resorption of biphasic calcium phosphate ceramic in vitro. J Biomed Mater Res 1997;37:346–52. Yamada S, Heymann D, Bouler JM, Duculsi G. Osteoclastic resorption of biphasic calcium phosphate ceramic in vitro. J Biomed Mater Res 1997;37:346–52.
125.
Zurück zum Zitat Bouler JM, LeGeros RZ, Duculsi G. Biphasic calcium phosphates: influence of three synthesis parameters on the HA/β-TCP ratio. J Biomed Mater Res 2000;51:680–84. Bouler JM, LeGeros RZ, Duculsi G. Biphasic calcium phosphates: influence of three synthesis parameters on the HA/β-TCP ratio. J Biomed Mater Res 2000;51:680–84.
126.
Zurück zum Zitat Monma H, Ueno S, Kanazawa TT. Properties of hydroxyapatite prepared by the hydrolysis of tricalcium phosphate. J Chem Tech Biotechnol 1981;31:15–24. Monma H, Ueno S, Kanazawa TT. Properties of hydroxyapatite prepared by the hydrolysis of tricalcium phosphate. J Chem Tech Biotechnol 1981;31:15–24.
127.
Zurück zum Zitat Takagi S, Chow LC, Ishikawa K. Formation of hydroxyapatite in new calcium phosphate cements. Biomaterials 1998;19:1593–9. Takagi S, Chow LC, Ishikawa K. Formation of hydroxyapatite in new calcium phosphate cements. Biomaterials 1998;19:1593–9.
128.
Zurück zum Zitat Bohner M. Calcium phosphatem ceramic. Injury 2000;1:S-D37–47. Bohner M. Calcium phosphatem ceramic. Injury 2000;1:S-D37–47.
129.
Zurück zum Zitat Ueyama Y, Ishikawa K, Mano T, Koyama T, MatsumuraT, Suzuki K. Initial tissue response to anti-washout apatite cement in the rat palatal region: comparison with conventional apatite cement. J Biomed Mater Res 2001;55:652–60. Ueyama Y, Ishikawa K, Mano T, Koyama T, MatsumuraT, Suzuki K. Initial tissue response to anti-washout apatite cement in the rat palatal region: comparison with conventional apatite cement. J Biomed Mater Res 2001;55:652–60.
130.
Zurück zum Zitat Yuasa T, Miyamoto Y, Ishikawa K, Takechi M, Nagayama M, Suzuki K. In vitro resorption of three apatite cements with osteoclasts. J Biomed Mater Res 2001;54:344–50. Yuasa T, Miyamoto Y, Ishikawa K, Takechi M, Nagayama M, Suzuki K. In vitro resorption of three apatite cements with osteoclasts. J Biomed Mater Res 2001;54:344–50.
131.
Zurück zum Zitat Hench LL, Spinter RJ, Allen WC, Greenlee JTK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 1971;2:117–41. Hench LL, Spinter RJ, Allen WC, Greenlee JTK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 1971;2:117–41.
132.
Zurück zum Zitat Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920–26. Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920–26.
133.
Zurück zum Zitat Saiz E, Gremillard L, Menendez G, Miranda P, Gryn K, Tomsia AP. Preparation of porous hydroxyapatite scaffolds. Mat Sci Eng C Bio 2007;S27:546–50. Saiz E, Gremillard L, Menendez G, Miranda P, Gryn K, Tomsia AP. Preparation of porous hydroxyapatite scaffolds. Mat Sci Eng C Bio 2007;S27:546–50.
134.
Zurück zum Zitat Bohner M, Hvan Lenthe G, Grunenfelder S, Hirsiger W, Evison R, Muller R. Synthesis and characterization of porous beta-tricalcium phosphate blocks. Biomaterials 2005;26:6099–105. Bohner M, Hvan Lenthe G, Grunenfelder S, Hirsiger W, Evison R, Muller R. Synthesis and characterization of porous beta-tricalcium phosphate blocks. Biomaterials 2005;26:6099–105.
135.
Zurück zum Zitat Deville S, Saiz E, Tomsia AP. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 2006;27:5480–9. Deville S, Saiz E, Tomsia AP. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 2006;27:5480–9.
136.
Zurück zum Zitat Franco J, Hunger P, Launey ME, Tomsia AP, Saiz E. Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel. Acta Biomater 2010;6:218–28. Franco J, Hunger P, Launey ME, Tomsia AP, Saiz E. Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel. Acta Biomater 2010;6:218–28.
137.
Zurück zum Zitat Liu YX, Kim JH, Young D, Kim SW, Nishimoto SK, Yang YZ. Novel template-casting technique for fabricating β-tricalcium phosphate scaffolds with high interconnectivity and mechanical strength and in vitro cell responses. J Biomed Mater Res A 2010;92A:997–1006. Liu YX, Kim JH, Young D, Kim SW, Nishimoto SK, Yang YZ. Novel template-casting technique for fabricating β-tricalcium phosphate scaffolds with high interconnectivity and mechanical strength and in vitro cell responses. J Biomed Mater Res A 2010;92A:997–1006.
138.
Zurück zum Zitat An YH, Friedman RJ. Animal models of bone defect repair. Boca Raton, FL: CRC Press LLC, 1999, pp. 241–60. An YH, Friedman RJ. Animal models of bone defect repair. Boca Raton, FL: CRC Press LLC, 1999, pp. 241–60.
139.
Zurück zum Zitat Guicheux J, Gauthier O, Aguado E, Heymann D, Pilet P, Couillard S, Faivre A, Daculsi G. Growth hormone-loaded macroporous calcium phosphate ceramic: in vitro biopharmaceutical characterization and preliminary in vivo study. J Biomed Mater Res 1998;40:560–6. Guicheux J, Gauthier O, Aguado E, Heymann D, Pilet P, Couillard S, Faivre A, Daculsi G. Growth hormone-loaded macroporous calcium phosphate ceramic: in vitro biopharmaceutical characterization and preliminary in vivo study. J Biomed Mater Res 1998;40:560–6.
140.
Zurück zum Zitat Navarro M, Ginebra MP, Planell JA, Zeppetelli S, Ambrosio L. Development and cell response of a new biodegradable composite scaffold for guided bone regeneration. J Mater Sci Mater Med 2004;15:419–22. Navarro M, Ginebra MP, Planell JA, Zeppetelli S, Ambrosio L. Development and cell response of a new biodegradable composite scaffold for guided bone regeneration. J Mater Sci Mater Med 2004;15:419–22.
141.
Zurück zum Zitat Zhang R, Ma PX. Polyα-hydroxyl acids;/hydroxyapatite porous composites for bone–tissue engineering I Preparation and morphology. J Biomed Mater Res 1999;44:446–55. Zhang R, Ma PX. Polyα-hydroxyl acids;/hydroxyapatite porous composites for bone–tissue engineering I Preparation and morphology. J Biomed Mater Res 1999;44:446–55.
142.
Zurück zum Zitat Ambrosio AMA, Sahota JS, Khan Y, Laurencin CT. A novel amorphous calcium phosphate polymer ceramic for bone repair: I synthesis and characterization. J Biomed Mater Res B Appl Biomater 2001;58:295–301. Ambrosio AMA, Sahota JS, Khan Y, Laurencin CT. A novel amorphous calcium phosphate polymer ceramic for bone repair: I synthesis and characterization. J Biomed Mater Res B Appl Biomater 2001;58:295–301.
143.
Zurück zum Zitat Lee YM, Park YJ, Lee SJ, Ku Y, Han SB, Choi SM, Klokkevold PR, Chung CP. Tissue engineered bone formation using chitosan/tricalcium phosphate sponges. J Periodontol 2000;71:410–17. Lee YM, Park YJ, Lee SJ, Ku Y, Han SB, Choi SM, Klokkevold PR, Chung CP. Tissue engineered bone formation using chitosan/tricalcium phosphate sponges. J Periodontol 2000;71:410–17.
144.
Zurück zum Zitat Leach JK, Kaigler D, Wang Z, Krebsbach PH, Mooney DJ. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials 2006;27:3249–55. Leach JK, Kaigler D, Wang Z, Krebsbach PH, Mooney DJ. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials 2006;27:3249–55.
145.
Zurück zum Zitat Kim HW, Knowles JC, Kim HE. Hydroxyapatite/polyε-caprolactone; composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials 2004;25:1279–87. Kim HW, Knowles JC, Kim HE. Hydroxyapatite/polyε-caprolactone; composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials 2004;25:1279–87.
146.
Zurück zum Zitat Wu H, Zheng O, Du J, Yan Y, Liu C. New drug delivery system ciprofloxacine/tricalcium phosphate delivery capsule CTDC; and its in vitro drug release pattern. J Tongji Med Univ 1997;17:160–4. Wu H, Zheng O, Du J, Yan Y, Liu C. New drug delivery system ciprofloxacine/tricalcium phosphate delivery capsule CTDC; and its in vitro drug release pattern. J Tongji Med Univ 1997;17:160–4.
147.
Zurück zum Zitat Yamashita Y, Uchida A, Yamakawa T, Shinto Y, Araki N, Kato K. Treatment of chronic osteomyelitis using calcium hydroxyapatite ceramic implants impregnated with antibiotic. Int Orthop 1998;22:247–51. Yamashita Y, Uchida A, Yamakawa T, Shinto Y, Araki N, Kato K. Treatment of chronic osteomyelitis using calcium hydroxyapatite ceramic implants impregnated with antibiotic. Int Orthop 1998;22:247–51.
148.
Zurück zum Zitat Erbe EM, Day DE.Chemical durability of Y2O3–Al2O3–SiO2 glasses for the in vivo delivery of beta radiation. J Biomed Mater Res 1987;27:1301–8. Erbe EM, Day DE.Chemical durability of Y2O3–Al2O3–SiO2 glasses for the in vivo delivery of beta radiation. J Biomed Mater Res 1987;27:1301–8.
149.
Zurück zum Zitat Ruiz-Hernández E, Serrano MC, Arcos D, Vallet-Regí M. Glass-glass ceramic thermoseeds for hyperthermic treatment of bone tumors. J Biomed Mater Res A 2006; 79:533–43. Ruiz-Hernández E, Serrano MC, Arcos D, Vallet-Regí M. Glass-glass ceramic thermoseeds for hyperthermic treatment of bone tumors. J Biomed Mater Res A 2006; 79:533–43.
150.
Zurück zum Zitat SSaqlain A, Hashmi MU, Alam S, Shamim A. Magnetic and bioactivity evaluation of ferrimagnetic ZnFe2O4 containing glass ceramics for the hyperthermia treatment of cancer. J Magnet and Magnetic Mater 2010;322:375-81. SSaqlain A, Hashmi MU, Alam S, Shamim A. Magnetic and bioactivity evaluation of ferrimagnetic ZnFe2O4 containing glass ceramics for the hyperthermia treatment of cancer. J Magnet and Magnetic Mater 2010;322:375-81.
151.
Zurück zum Zitat Yu HY, Cai ZB, Ren PD, Zhu MH, Zhou ZR. Friction and wear behavior of dental feldspathic porcelain. Wear 2006;261:611–21. Yu HY, Cai ZB, Ren PD, Zhu MH, Zhou ZR. Friction and wear behavior of dental feldspathic porcelain. Wear 2006;261:611–21.
152.
Zurück zum Zitat Kelly JR. Dental ceramics: current thinking and trends. Dent Clin North Am 2004;48:513–30. Kelly JR. Dental ceramics: current thinking and trends. Dent Clin North Am 2004;48:513–30.
153.
Zurück zum Zitat JBlaker J, Maquet V, Jérôme R, Boccaccini AR, Nazhat SN. Mechanical properties of highly porous PDLLA/Bioglass® composite foams as scaffolds for bone tissue engineering. Acta Biomater 2005;1:643–52. JBlaker J, Maquet V, Jérôme R, Boccaccini AR, Nazhat SN. Mechanical properties of highly porous PDLLA/Bioglass® composite foams as scaffolds for bone tissue engineering. Acta Biomater 2005;1:643–52.
154.
Zurück zum Zitat Hasegawa S, Tamura J, Neo M, Goto K, Shikinami Y, Saito M, Kita M, Nakamura T. In vivo evaluation of a porous hydroxyapatite/poly-dl-lactide composite for use as a bone substitute. J Biomed Mater Res 2005;75A:567–79. Hasegawa S, Tamura J, Neo M, Goto K, Shikinami Y, Saito M, Kita M, Nakamura T. In vivo evaluation of a porous hydroxyapatite/poly-dl-lactide composite for use as a bone substitute. J Biomed Mater Res 2005;75A:567–79.
155.
Zurück zum Zitat Niemelä T, Niiranen H, Kellomäki M, Törmälä P. Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents Part I Initial mechanical properties and bioactivity. Acta Biomater 2005;1:235–42. Niemelä T, Niiranen H, Kellomäki M, Törmälä P. Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents Part I Initial mechanical properties and bioactivity. Acta Biomater 2005;1:235–42.
156.
Zurück zum Zitat Abdala AA, Milius DL, Adamson DH, Aksay IAA, Prud’homme RK. Inspired by abalone shell: strengthening of porous ceramics with polymers. Polym Mater Sci Eng 2004;90:384–5. Abdala AA, Milius DL, Adamson DH, Aksay IAA, Prud’homme RK. Inspired by abalone shell: strengthening of porous ceramics with polymers. Polym Mater Sci Eng 2004;90:384–5.
157.
Zurück zum Zitat Peroglio M, Gremillard L, Chevalier J, Chazeau L, Gauthier C, Hamaide T. Toughening of bio-ceramics scaffolds by polymer coating. J Eur Ceram Soc 2007;27:2679–85. Peroglio M, Gremillard L, Chevalier J, Chazeau L, Gauthier C, Hamaide T. Toughening of bio-ceramics scaffolds by polymer coating. J Eur Ceram Soc 2007;27:2679–85.
158.
Zurück zum Zitat Cui FZ, Li Y, Ge J. Self-assembly of mineralized collagen composites. Mater Sci Eng R 2007;R57:1–27. Cui FZ, Li Y, Ge J. Self-assembly of mineralized collagen composites. Mater Sci Eng R 2007;R57:1–27.
159.
Zurück zum Zitat Chen QZ, Boccaccini AR. Poly(d,l-lactic acid) coated 45S5 Bioglass®-based scaffolds: processing and characterization. J Biomed Mater Res A 2006;77A:445–57. Chen QZ, Boccaccini AR. Poly(d,l-lactic acid) coated 45S5 Bioglass®-based scaffolds: processing and characterization. J Biomed Mater Res A 2006;77A:445–57.
160.
Zurück zum Zitat Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO. Tough, bio-inspired hybrid materials. Science 2008;322:1516–20. Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO. Tough, bio-inspired hybrid materials. Science 2008;322:1516–20.
161.
Zurück zum Zitat Vallet-Regí M. Evolution of bioceramics within the field of biomaterials. C R Chimie 2010;13:174–85. Vallet-Regí M. Evolution of bioceramics within the field of biomaterials. C R Chimie 2010;13:174–85.
Metadaten
Titel
Bioceramics in Tissue Engineering
verfasst von
Yunzhi Yang
Yunqing Kang
Milan Sen
Sangwon Park
Copyright-Jahr
2011
Verlag
Springer Vienna
DOI
https://doi.org/10.1007/978-3-7091-0385-2_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.