Skip to main content
Erschienen in: Journal of Materials Science 12/2018

05.03.2018 | Chemical routes to materials

Biocompatible nanoclusters of O-carboxymethyl chitosan-coated Fe3O4 nanoparticles: synthesis, characterization and magnetic heating efficiency

verfasst von: P. H. Linh, N. V. Chien, D. D. Dung, P. H. Nam, D. T. Hoa, N. T. N. Anh, L. V. Hong, N. X. Phuc, P. T. Phong

Erschienen in: Journal of Materials Science | Ausgabe 12/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we developed a polymer encapsulation of Fe3O4 nanoparticles as a core–shell nanocluster with different sizes to investigate the cluster structure effect on their magnetic properties and magnetic heating behavior. Well-dispersed nanoclusters of O-carboxymethyl chitosan-coated Fe3O4 nanoparticles were synthesized by microwave-assisted co-precipitation. The cluster sizes were tunable by varying the concentration of polymers used during synthesis. Nanoclusters present superparamagnetic behavior at room temperature with a reduction in saturation magnetization as a consequence of coating layer. The shift of blocking temperature to the higher value with increasing clusters size shows the stronger magnetic interaction in larger magnetic clusters. In a low alternating magnetic field with frequency of 178 Hz and amplitude of 103 Oe, nanoclusters offer a high heating efficiency. A maximum specific absorption rate of 204 W/g is observed in the sample with hydrodynamic size of 53 nm. In vitro cytotoxicity analysis performed on HeLa cells verified that nanoclusters show a good biocompatibility and can be an excellent candidate for applications in hyperthermia cancer treatment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144–157CrossRef Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144–157CrossRef
2.
Zurück zum Zitat Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112(11):5818–5878CrossRef Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112(11):5818–5878CrossRef
3.
Zurück zum Zitat Deatsch AE, Evans BA (2014) Heating efficiency in magnetic nanoparticle hyperthermia. J Magn Magn Mater 354:163–172CrossRef Deatsch AE, Evans BA (2014) Heating efficiency in magnetic nanoparticle hyperthermia. J Magn Magn Mater 354:163–172CrossRef
4.
Zurück zum Zitat Mehdaoui B, Meffre A, Lacroix LM, Carrey J, Lachaize S, Gougeon M, Respaud M, Chaudret B (2010) Large specific absorption rates in the magnetic hyperthermia properties of metallic iron nanocubes. J Magn Magn Mater 322:L49–L52CrossRef Mehdaoui B, Meffre A, Lacroix LM, Carrey J, Lachaize S, Gougeon M, Respaud M, Chaudret B (2010) Large specific absorption rates in the magnetic hyperthermia properties of metallic iron nanocubes. J Magn Magn Mater 322:L49–L52CrossRef
5.
Zurück zum Zitat Johannsen M, Gneveckow U, Taymoorian K, Thiesen B, Waldöfner N, Scholz R, Cho CH, Jordan A, Wust P, Loening SA (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52:131CrossRef Johannsen M, Gneveckow U, Taymoorian K, Thiesen B, Waldöfner N, Scholz R, Cho CH, Jordan A, Wust P, Loening SA (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52:131CrossRef
6.
Zurück zum Zitat Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–324CrossRef Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–324CrossRef
7.
Zurück zum Zitat Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8–23CrossRef Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8–23CrossRef
8.
Zurück zum Zitat Lartigue L, Hugounenq P, Alloyeau D, Clarke SP, Levy M, Bacri JC, Ménager C (2012) Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 6:10935–10949CrossRef Lartigue L, Hugounenq P, Alloyeau D, Clarke SP, Levy M, Bacri JC, Ménager C (2012) Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 6:10935–10949CrossRef
9.
Zurück zum Zitat Qiu P, Jensen C, Charity N, Towner R, Mao C (2010) Oil phase evaporation-induced self-assembly of hydrophobic nanoparticles into spherical clusters with controlled surface chemistry in an oil-in-water dispersion and comparison of behaviours of individual and clustered iron oxide nanoparticles. J Am Chem Soc 132:17724–17732CrossRef Qiu P, Jensen C, Charity N, Towner R, Mao C (2010) Oil phase evaporation-induced self-assembly of hydrophobic nanoparticles into spherical clusters with controlled surface chemistry in an oil-in-water dispersion and comparison of behaviours of individual and clustered iron oxide nanoparticles. J Am Chem Soc 132:17724–17732CrossRef
10.
Zurück zum Zitat Serantes D, Simeonidis K, Angelakeris M, Chubykalo-Fesenko O, Marciello M, Morales M, Baldomir D, Martinez-Boubeta C (2014) Multiplying magnetic hyperthermia response by nanoparticle assembling. J Phys Chem C 118:5927–5934CrossRef Serantes D, Simeonidis K, Angelakeris M, Chubykalo-Fesenko O, Marciello M, Morales M, Baldomir D, Martinez-Boubeta C (2014) Multiplying magnetic hyperthermia response by nanoparticle assembling. J Phys Chem C 118:5927–5934CrossRef
11.
Zurück zum Zitat Hedayatnasab Z, Abnisa F, Daud WMAW (2017) Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des 123:174–196CrossRef Hedayatnasab Z, Abnisa F, Daud WMAW (2017) Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des 123:174–196CrossRef
12.
Zurück zum Zitat Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–915CrossRef Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–915CrossRef
13.
Zurück zum Zitat Kumar CSSR, Mohammad F (2011) Magnetic nano materials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63:789–808CrossRef Kumar CSSR, Mohammad F (2011) Magnetic nano materials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63:789–808CrossRef
14.
Zurück zum Zitat Qu J, Liu G, Wang Y, Hong R (2010) Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia. Adv Powder Technol 21:461–467CrossRef Qu J, Liu G, Wang Y, Hong R (2010) Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia. Adv Powder Technol 21:461–467CrossRef
15.
Zurück zum Zitat Soares PIP, Machado D, Laia C, Pereira LCJ, Joana TC, Ferreira IMM, Novo CMM, Paulo J (2016) Thermal and magnetic properties of chitosan–iron oxide nanoparticles. Carbohydr Polym 149:382–390CrossRef Soares PIP, Machado D, Laia C, Pereira LCJ, Joana TC, Ferreira IMM, Novo CMM, Paulo J (2016) Thermal and magnetic properties of chitosan–iron oxide nanoparticles. Carbohydr Polym 149:382–390CrossRef
16.
Zurück zum Zitat Zamora-Moraa V, Fernández-Gutiérreza M, González-Gómeza Á, Sanzc B, Romána JS, Goyac GF, Hernándeza R, Mijangos C (2017) Chitosan nanoparticles for combined drug delivery and magnetic hyperthermia: from preparation to in vitro studies. Carbohydr Polym 157:361–370CrossRef Zamora-Moraa V, Fernández-Gutiérreza M, González-Gómeza Á, Sanzc B, Romána JS, Goyac GF, Hernándeza R, Mijangos C (2017) Chitosan nanoparticles for combined drug delivery and magnetic hyperthermia: from preparation to in vitro studies. Carbohydr Polym 157:361–370CrossRef
17.
Zurück zum Zitat Zhu A, Yuan L, Dai S (2008) Preparation of well-dispersed superparamagnetic iron oxide nanoparticles in aqueous solution with biocompatible N-succinyl-O-carboxymethylchitosan. J Phys Chem C 112:5432–5438CrossRef Zhu A, Yuan L, Dai S (2008) Preparation of well-dispersed superparamagnetic iron oxide nanoparticles in aqueous solution with biocompatible N-succinyl-O-carboxymethylchitosan. J Phys Chem C 112:5432–5438CrossRef
18.
Zurück zum Zitat Shen S, Kong F, Guo X, Wu L, Shen H, Xie M, Wang X, Jin Y, Ge Y (2013) CMCTS stabilized Fe3O4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumor ablation. Nanoscale 5(17):8056–8066CrossRef Shen S, Kong F, Guo X, Wu L, Shen H, Xie M, Wang X, Jin Y, Ge Y (2013) CMCTS stabilized Fe3O4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumor ablation. Nanoscale 5(17):8056–8066CrossRef
19.
Zurück zum Zitat Li H, Li Z, Zhao J, Tang B, Chen Y, Hu Y, He Z, Wang Y (2014) Carboxymethyl chitosan-folic acid-conjugated Fe3O4@SiO2 as a safe and targeting antitumor nanovehicle in vitro. Nanoscale Res Lett 9:146–157CrossRef Li H, Li Z, Zhao J, Tang B, Chen Y, Hu Y, He Z, Wang Y (2014) Carboxymethyl chitosan-folic acid-conjugated Fe3O4@SiO2 as a safe and targeting antitumor nanovehicle in vitro. Nanoscale Res Lett 9:146–157CrossRef
20.
Zurück zum Zitat Bekovic M, Hamler A (2010) Determination of the heating effect of magnetic fluid in alternating magnetic field. IEEE Trans Magn 46(2):552–555CrossRef Bekovic M, Hamler A (2010) Determination of the heating effect of magnetic fluid in alternating magnetic field. IEEE Trans Magn 46(2):552–555CrossRef
21.
Zurück zum Zitat Freire TM, Dutra LMU, Queiroz DC, Ricardo NMPS, Barreto K, Frederik JCD, Wurm R, Sousa CP, Correia AN, Lima-Neto P, Fechine PBA (2016) Fast ultrasound assisted synthesis of CHITOSAN-based magnetite nanocomposite as a modified electrode sensor. Carbohydr Polym 151:760–769CrossRef Freire TM, Dutra LMU, Queiroz DC, Ricardo NMPS, Barreto K, Frederik JCD, Wurm R, Sousa CP, Correia AN, Lima-Neto P, Fechine PBA (2016) Fast ultrasound assisted synthesis of CHITOSAN-based magnetite nanocomposite as a modified electrode sensor. Carbohydr Polym 151:760–769CrossRef
22.
Zurück zum Zitat Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Rel 65(1–2):271–281CrossRef Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Rel 65(1–2):271–281CrossRef
23.
Zurück zum Zitat Oluwasina OO, Olagboye AS, Boboye A, Hassan FG (2017) Carboxymethyl chitosan zinc supplement: preparation, physicochemical, and preliminary antimicrobial analysis. Cogent Chemistry 3:1294470–1294482CrossRef Oluwasina OO, Olagboye AS, Boboye A, Hassan FG (2017) Carboxymethyl chitosan zinc supplement: preparation, physicochemical, and preliminary antimicrobial analysis. Cogent Chemistry 3:1294470–1294482CrossRef
24.
Zurück zum Zitat Thirumavalavan M, Huang K-L, Lee J-F (2013) Preparation and morphology studies of nano zinc oxide obtained using native and modified chitosans. Materials 6(9):4198–4212CrossRef Thirumavalavan M, Huang K-L, Lee J-F (2013) Preparation and morphology studies of nano zinc oxide obtained using native and modified chitosans. Materials 6(9):4198–4212CrossRef
25.
Zurück zum Zitat Wang H-D, Yang Q, Niu CH (2010) Functionalization of nanodiamond particles with N,O-carboxymethyl chitosan. Diam Relat Mater 19:441–444CrossRef Wang H-D, Yang Q, Niu CH (2010) Functionalization of nanodiamond particles with N,O-carboxymethyl chitosan. Diam Relat Mater 19:441–444CrossRef
26.
Zurück zum Zitat Reddy DHK, Lee S-M (2013) Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Colloid Interface Sci 201–202:68–93CrossRef Reddy DHK, Lee S-M (2013) Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Colloid Interface Sci 201–202:68–93CrossRef
27.
Zurück zum Zitat He G, Chen X, Yin Y, Cai W, Ke W, Kong Y, Zheng H (2016) Preparation and antibacterial properties of O-carboxymethyl chitosan/lincomycin hydrogels. J Biomater Sci Polym Ed 27(4):370–384CrossRef He G, Chen X, Yin Y, Cai W, Ke W, Kong Y, Zheng H (2016) Preparation and antibacterial properties of O-carboxymethyl chitosan/lincomycin hydrogels. J Biomater Sci Polym Ed 27(4):370–384CrossRef
28.
Zurück zum Zitat Britto DD, Campana-Filho SP (2004) A kinetic study on the thermal degradation of N,N,N-trimethylchitosan. Polym Degrad Stab 84:353–361CrossRef Britto DD, Campana-Filho SP (2004) A kinetic study on the thermal degradation of N,N,N-trimethylchitosan. Polym Degrad Stab 84:353–361CrossRef
29.
Zurück zum Zitat Mourya V, Inamdar NN, Tiwari A (2010) Carboxymethyl chitosan and its applications. Adv Mater Lett 1(1):11–33CrossRef Mourya V, Inamdar NN, Tiwari A (2010) Carboxymethyl chitosan and its applications. Adv Mater Lett 1(1):11–33CrossRef
30.
Zurück zum Zitat Bruvera IJ, Mendoza ZP, Calatayud MP, Goya GF, Sánchez FH (2015) Determination of the blocking temperature of magnetic nanoparticles: the good, the bad, and the ugly. J Appl Phys 118:184304–184311CrossRef Bruvera IJ, Mendoza ZP, Calatayud MP, Goya GF, Sánchez FH (2015) Determination of the blocking temperature of magnetic nanoparticles: the good, the bad, and the ugly. J Appl Phys 118:184304–184311CrossRef
31.
Zurück zum Zitat Kechrakos D, Trohidou KN (2000) Interplay of dipolar interactions and grain-size distribution in the giant magnetoresistance of granular metals. Phys Rev B 62:3941–3951CrossRef Kechrakos D, Trohidou KN (2000) Interplay of dipolar interactions and grain-size distribution in the giant magnetoresistance of granular metals. Phys Rev B 62:3941–3951CrossRef
32.
Zurück zum Zitat Vargas JM, Nunes WC, Socolovsky LM, Knobel M, Zanchet D (2005) Effect of dipolar interaction observed in iron-based nanoparticles. Phys Rev B 72:184422–184428CrossRef Vargas JM, Nunes WC, Socolovsky LM, Knobel M, Zanchet D (2005) Effect of dipolar interaction observed in iron-based nanoparticles. Phys Rev B 72:184422–184428CrossRef
33.
Zurück zum Zitat Raap MBFV, Coral DF, Yu S, Muñoz GA, Sánchez FH, Roig A (2017) Anticipating hyperthermic efficiency of magnetic colloids using a semi-empirical model: a tool to help medical decisions. Phys Chem Chem Phys 19:7176–7187CrossRef Raap MBFV, Coral DF, Yu S, Muñoz GA, Sánchez FH, Roig A (2017) Anticipating hyperthermic efficiency of magnetic colloids using a semi-empirical model: a tool to help medical decisions. Phys Chem Chem Phys 19:7176–7187CrossRef
34.
Zurück zum Zitat Allia P, Coisson M, Tiberto P, Vinai F, Knobel M, Novak MA, Nunes WC (2001) Granular Cu–Co alloys as interacting superparamagnets. Phys Rev B 64:144420–144432CrossRef Allia P, Coisson M, Tiberto P, Vinai F, Knobel M, Novak MA, Nunes WC (2001) Granular Cu–Co alloys as interacting superparamagnets. Phys Rev B 64:144420–144432CrossRef
35.
Zurück zum Zitat Liu Z, Bai H, Sun DD (2011) Facile fabrication of porous chitosan/TiO2/Fe3O4 microspheres with multifunction for water purifications. New J Chem 35:137–140CrossRef Liu Z, Bai H, Sun DD (2011) Facile fabrication of porous chitosan/TiO2/Fe3O4 microspheres with multifunction for water purifications. New J Chem 35:137–140CrossRef
36.
Zurück zum Zitat Khalkhali M, Sadighian S, Rostamizadeh K, Khoeini F, Naghibi M, Bayat N, Habibizadeh M, Hamidi M (2015) Synthesis and characterization of dextran coated magnetite nanoparticles for diagnostics and therapy. Bioimpacts 5(3):141–150CrossRef Khalkhali M, Sadighian S, Rostamizadeh K, Khoeini F, Naghibi M, Bayat N, Habibizadeh M, Hamidi M (2015) Synthesis and characterization of dextran coated magnetite nanoparticles for diagnostics and therapy. Bioimpacts 5(3):141–150CrossRef
37.
Zurück zum Zitat Guardia PL, Labarta A, Batlle X (2011) Tuning the size, the shape, and the magnetic properties of iron oxide nanoparticles. J Phys Chem C 15:390–396CrossRef Guardia PL, Labarta A, Batlle X (2011) Tuning the size, the shape, and the magnetic properties of iron oxide nanoparticles. J Phys Chem C 15:390–396CrossRef
38.
Zurück zum Zitat Goya GF, Berquó TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94:3520–3528CrossRef Goya GF, Berquó TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94:3520–3528CrossRef
39.
Zurück zum Zitat Zélis PM, Muraca D, González JS, Pasquevich GA, Alvarez VA, Pirota KR, Sánchez FH (2013) Magnetic properties study of iron-oxide nanoparticles/PVA ferrogels with potential biomedical applications. J Nanopart Res 15:1613–1625CrossRef Zélis PM, Muraca D, González JS, Pasquevich GA, Alvarez VA, Pirota KR, Sánchez FH (2013) Magnetic properties study of iron-oxide nanoparticles/PVA ferrogels with potential biomedical applications. J Nanopart Res 15:1613–1625CrossRef
40.
Zurück zum Zitat Liu XL, Fan HM, Yi JB, Yang Y, Choo ESG, Xue JM, Fana DD, Ding J (2012) Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. J Mater Chem 22:8235–8244CrossRef Liu XL, Fan HM, Yi JB, Yang Y, Choo ESG, Xue JM, Fana DD, Ding J (2012) Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. J Mater Chem 22:8235–8244CrossRef
41.
Zurück zum Zitat Sadat ME, Patel R, Sookoor J, Bud’ko SL, Ewing RC, Zhang J, Xu H, Wang Y, Pauletti GM, Mast DB, Shi D (2014) Effect of Spatial Confinement on Magnetic Hyperthermia via Dipolar Interactions in Fe3O4 Nanoparticles for Biomedical Applications. Mater Sci Eng C Mater Biol Appl 42:52–63CrossRef Sadat ME, Patel R, Sookoor J, Bud’ko SL, Ewing RC, Zhang J, Xu H, Wang Y, Pauletti GM, Mast DB, Shi D (2014) Effect of Spatial Confinement on Magnetic Hyperthermia via Dipolar Interactions in Fe3O4 Nanoparticles for Biomedical Applications. Mater Sci Eng C Mater Biol Appl 42:52–63CrossRef
42.
Zurück zum Zitat Urtizberea A, Natividad E, Arizaga A, Castro M, Mediano A (2010) Specific absorption rates and magnetic properties of ferrofluids with interaction effects at low concentrations. J Phys Chem C 114:4916–4922CrossRef Urtizberea A, Natividad E, Arizaga A, Castro M, Mediano A (2010) Specific absorption rates and magnetic properties of ferrofluids with interaction effects at low concentrations. J Phys Chem C 114:4916–4922CrossRef
43.
Zurück zum Zitat Gawali SL, Barick BK, Barick KC, Hassan PA (2017) Effect of sugar alcohol on colloidal stabilization of magnetic nanoparticles for hyperthermia and drug delivery applications. J Alloys Compd 725:800–806CrossRef Gawali SL, Barick BK, Barick KC, Hassan PA (2017) Effect of sugar alcohol on colloidal stabilization of magnetic nanoparticles for hyperthermia and drug delivery applications. J Alloys Compd 725:800–806CrossRef
44.
Zurück zum Zitat Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628–2635CrossRef Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628–2635CrossRef
45.
Zurück zum Zitat Hauser AK, Mathias R, Anderson KW, Hilt JZ (2015) The effects of synthesis method on the physical and chemical properties of dextran coated iron oxide nanoparticles. Mater Chem Phys 160:177–186CrossRef Hauser AK, Mathias R, Anderson KW, Hilt JZ (2015) The effects of synthesis method on the physical and chemical properties of dextran coated iron oxide nanoparticles. Mater Chem Phys 160:177–186CrossRef
46.
Zurück zum Zitat Patil RM, Thorat ND, Shete PB, Otari SV, Tiwale BM, Pawar SH (2016) In vitro hyperthermia with improved colloidal stability and enhanced SAR of magnetic core/shell nanostructures. Mater Sci Eng, C 59:702–709CrossRef Patil RM, Thorat ND, Shete PB, Otari SV, Tiwale BM, Pawar SH (2016) In vitro hyperthermia with improved colloidal stability and enhanced SAR of magnetic core/shell nanostructures. Mater Sci Eng, C 59:702–709CrossRef
Metadaten
Titel
Biocompatible nanoclusters of O-carboxymethyl chitosan-coated Fe3O4 nanoparticles: synthesis, characterization and magnetic heating efficiency
verfasst von
P. H. Linh
N. V. Chien
D. D. Dung
P. H. Nam
D. T. Hoa
N. T. N. Anh
L. V. Hong
N. X. Phuc
P. T. Phong
Publikationsdatum
05.03.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 12/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2180-0

Weitere Artikel der Ausgabe 12/2018

Journal of Materials Science 12/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.