Skip to main content

2020 | OriginalPaper | Buchkapitel

Biocomposites from Biofibers and Biopolymers

verfasst von : K. Gopalakrishna, Narendra Reddy, Yi Zhao

Erschienen in: Biofibers and Biopolymers for Biocomposites

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biobased composites are developed using either the reinforcement and/or matrix from renewable and biodegradable polymers. Although there are plenty of biobased resources available as reinforcements, there are limited numbers of bioresins. Also, the properties of composites developed using biobased resins are not suitable for commercial applications and biobased resins are expensive compared to common synthetic polymer based resins. Considerable efforts are being made to develop biobased resins or modify existing resins to reduce cost and improve performance. In this chapter, we report the latest developments in developing biobased composites classified based on the matrix used. In addition, the performance of the biobased composites under various environmental conditions has also been discussed. Due to the extensive literature available, we have considered studies that are distinct and have been reported in the recent years.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nyambo, C., Mohanty, A. K., & Misra, M. (2010). Polylactide-based renewable green composites from agricultural residues and their hybrids. Biomacromolecules, 11(6), 1654–1660.CrossRef Nyambo, C., Mohanty, A. K., & Misra, M. (2010). Polylactide-based renewable green composites from agricultural residues and their hybrids. Biomacromolecules, 11(6), 1654–1660.CrossRef
2.
Zurück zum Zitat Siakeng, R., Mohammad, J., Hidayah, A., Sapuan, S. M., Mohammad, A., & Naheed, S. (2019). Natural fiber reinforced polylactic acid composites: A review. Polymer Composites, 40(2), 446–463.CrossRef Siakeng, R., Mohammad, J., Hidayah, A., Sapuan, S. M., Mohammad, A., & Naheed, S. (2019). Natural fiber reinforced polylactic acid composites: A review. Polymer Composites, 40(2), 446–463.CrossRef
3.
Zurück zum Zitat Tang, G., Xinjie, H., Houcheng, D., Xin, W., Shudong, J., Keqing, Z., et al. (2014). Combustion properties and thermal degradation behaviors of biobased polylactide composites filled with calcium hypophosphite. RSC Advances, 4(18), 8985–8993.CrossRef Tang, G., Xinjie, H., Houcheng, D., Xin, W., Shudong, J., Keqing, Z., et al. (2014). Combustion properties and thermal degradation behaviors of biobased polylactide composites filled with calcium hypophosphite. RSC Advances, 4(18), 8985–8993.CrossRef
4.
Zurück zum Zitat Di, L., & Gerardus, J. (2014). Composites with hemp reinforcement and bio-based epoxy matrix. Composites Part B: Engineering, 67, 220–226.CrossRef Di, L., & Gerardus, J. (2014). Composites with hemp reinforcement and bio-based epoxy matrix. Composites Part B: Engineering, 67, 220–226.CrossRef
5.
Zurück zum Zitat Senoz, E., Joseph, F. S., Kaleigh, H. R., Richard, P. W., & Melissa, E. N. M. (2012). Pyrolyzed chicken feather fibers for biobased composite reinforcement. Journal of Applied Polymer Science, 128(2), 983–989.CrossRef Senoz, E., Joseph, F. S., Kaleigh, H. R., Richard, P. W., & Melissa, E. N. M. (2012). Pyrolyzed chicken feather fibers for biobased composite reinforcement. Journal of Applied Polymer Science, 128(2), 983–989.CrossRef
6.
Zurück zum Zitat Adekunle, K., Åkesson, D., & Skrifvars, M. (2010). Biobased composites prepared by compression molding with a novel thermoset resin from soybean oil and a natural-fiber reinforcement. Journal of Applied Polymer Science, 116(3), 1759–1765. Adekunle, K., Åkesson, D., & Skrifvars, M. (2010). Biobased composites prepared by compression molding with a novel thermoset resin from soybean oil and a natural-fiber reinforcement. Journal of Applied Polymer Science, 116(3), 1759–1765.
7.
Zurück zum Zitat Ramires, E. C., Jackson, D. M., Christian, G., Alain, C., & Frollini, E. (2010). Valorization of an industrial organosolv–sugarcane bagasse lignin: characterization and use as a matrix in biobased composites reinforced with sisal fibers. Biotechnology and Bioengineering, 107(4), 612–621.CrossRef Ramires, E. C., Jackson, D. M., Christian, G., Alain, C., & Frollini, E. (2010). Valorization of an industrial organosolv–sugarcane bagasse lignin: characterization and use as a matrix in biobased composites reinforced with sisal fibers. Biotechnology and Bioengineering, 107(4), 612–621.CrossRef
8.
Zurück zum Zitat Ramires, E. C., & Elisabete, F. (2012). Tannin–phenolic resins: synthesis, characterization, and application as matrix in biobased composites reinforced with sisal fibers. Composites Part B: Engineering, 43(7), 2851–2860.CrossRef Ramires, E. C., & Elisabete, F. (2012). Tannin–phenolic resins: synthesis, characterization, and application as matrix in biobased composites reinforced with sisal fibers. Composites Part B: Engineering, 43(7), 2851–2860.CrossRef
9.
Zurück zum Zitat Gupta, A. P., Sharif, A., & Anshu, D. (2011). Modification of novel bio-based resin-epoxidized soybean oil by conventional epoxy resin. Polymer Engineering & Science, 51(6), 1087–1091.CrossRef Gupta, A. P., Sharif, A., & Anshu, D. (2011). Modification of novel bio-based resin-epoxidized soybean oil by conventional epoxy resin. Polymer Engineering & Science, 51(6), 1087–1091.CrossRef
10.
Zurück zum Zitat Stanzione, J. F., Philip, A. G., Joshua, M. S., John, J. L. S., & Richard, P. W. (2013). Lignin-based bio-oil mimic as biobased resin for composite applications. ACS Sustainable Chemistry & Engineering, 1(4), 419–426.CrossRef Stanzione, J. F., Philip, A. G., Joshua, M. S., John, J. L. S., & Richard, P. W. (2013). Lignin-based bio-oil mimic as biobased resin for composite applications. ACS Sustainable Chemistry & Engineering, 1(4), 419–426.CrossRef
11.
Zurück zum Zitat Chung, Y., Johan, O., lsson, R., Jingxian, L., Curtis, F., Robert, W., et al. (2013). A renewable lignin–lactide copolymer and application in biobased composites. ACS Sustainable Chemistry & Engineering, 1(10), 1231–1238.CrossRef Chung, Y., Johan, O., lsson, R., Jingxian, L., Curtis, F., Robert, W., et al. (2013). A renewable lignin–lactide copolymer and application in biobased composites. ACS Sustainable Chemistry & Engineering, 1(10), 1231–1238.CrossRef
12.
Zurück zum Zitat Thakur, S., & Niranjan, K. (2013). Bio-based tough hyperbranched polyurethane–graphene oxide nanocomposites as advanced shape memory materials. RSC Advances, 3(24), 9476–9482.CrossRef Thakur, S., & Niranjan, K. (2013). Bio-based tough hyperbranched polyurethane–graphene oxide nanocomposites as advanced shape memory materials. RSC Advances, 3(24), 9476–9482.CrossRef
13.
Zurück zum Zitat Mati-Baouche, N., Hélène, D. B., André, L., Shengnan, S., Carlos, J. S. L., Philippe, L., et al. (2014). Mechanical, thermal and acoustical characterizations of an insulating bio-based composite made from sunflower stalks particles and chitosan. Industrial Crops and Products, 58, 244–250.CrossRef Mati-Baouche, N., Hélène, D. B., André, L., Shengnan, S., Carlos, J. S. L., Philippe, L., et al. (2014). Mechanical, thermal and acoustical characterizations of an insulating bio-based composite made from sunflower stalks particles and chitosan. Industrial Crops and Products, 58, 244–250.CrossRef
14.
Zurück zum Zitat Bourdot, A., Tala, M., Alexandre, G., Chadi, M., Patricia, V., Céline, T., et al. (2017). Characterization of a hemp-based agro-material: Influence of starch ratio and hemp shive size on physical, mechanical, and hygrothermal properties. Energy and Buildings, 153, 501–512.CrossRef Bourdot, A., Tala, M., Alexandre, G., Chadi, M., Patricia, V., Céline, T., et al. (2017). Characterization of a hemp-based agro-material: Influence of starch ratio and hemp shive size on physical, mechanical, and hygrothermal properties. Energy and Buildings, 153, 501–512.CrossRef
15.
Zurück zum Zitat Sandrine, U., Benitha, V. I., Mai, T. H., & Maalouf, C. (2015). Influence of chemical modification on hemp–starch concrete. Construction and Building Materials, 81, 208–215.CrossRef Sandrine, U., Benitha, V. I., Mai, T. H., & Maalouf, C. (2015). Influence of chemical modification on hemp–starch concrete. Construction and Building Materials, 81, 208–215.CrossRef
16.
Zurück zum Zitat Viel, M., Florence, C., Sylvie, P., & Christophe, L. (2019). Hemp-straw composites: gluing study and multi-physical characterizations. Materials, 12(8), 1199–1228.CrossRef Viel, M., Florence, C., Sylvie, P., & Christophe, L. (2019). Hemp-straw composites: gluing study and multi-physical characterizations. Materials, 12(8), 1199–1228.CrossRef
17.
Zurück zum Zitat Kremensas, A., Agnė, K., Saulius, V., Sigitas, V., & Giedrius, B. (2019). Mechanical performance of biodegradable thermoplastic polymer-based biocomposite boards from hemp shivs and corn starch for the building industry. Materials, 12(6), 845–857.CrossRef Kremensas, A., Agnė, K., Saulius, V., Sigitas, V., & Giedrius, B. (2019). Mechanical performance of biodegradable thermoplastic polymer-based biocomposite boards from hemp shivs and corn starch for the building industry. Materials, 12(6), 845–857.CrossRef
18.
Zurück zum Zitat Hanifi, B., Orhan, A., & Ceyda, D. (2016). Mechanical, thermal and acoustical characterizations of an insulation composite made of bio-based materials. Sustainable Cities and Society, 20, 17–26.CrossRef Hanifi, B., Orhan, A., & Ceyda, D. (2016). Mechanical, thermal and acoustical characterizations of an insulation composite made of bio-based materials. Sustainable Cities and Society, 20, 17–26.CrossRef
19.
Zurück zum Zitat Feldmann, M., & Andrzej, K. B. (2014). Bio-based polyamides reinforced with cellulosic fibres–processing and properties. Composites Science and Technology, 100, 113–120.CrossRef Feldmann, M., & Andrzej, K. B. (2014). Bio-based polyamides reinforced with cellulosic fibres–processing and properties. Composites Science and Technology, 100, 113–120.CrossRef
20.
Zurück zum Zitat Mittal, N., Ronnie J., Mona W., Tobias B., Karl, M. O. H., Fredrik L., et al. (2017). Ultrastrong and bioactive nanostructured bio-based composites. ACS Nano, 11(5), 5148–5159.CrossRef Mittal, N., Ronnie J., Mona W., Tobias B., Karl, M. O. H., Fredrik L., et al. (2017). Ultrastrong and bioactive nanostructured bio-based composites. ACS Nano, 11(5), 5148–5159.CrossRef
21.
Zurück zum Zitat Mahmood, H., Muhammad, M., Suzana, Y., & Tom, W. (2017). Ionic liquids assisted processing of renewable resources for the fabrication of biodegradable composite materials. Green Chemistry, 19(9), 2051–2075.CrossRef Mahmood, H., Muhammad, M., Suzana, Y., & Tom, W. (2017). Ionic liquids assisted processing of renewable resources for the fabrication of biodegradable composite materials. Green Chemistry, 19(9), 2051–2075.CrossRef
22.
Zurück zum Zitat Pupure, L., Newsha D., & Roberts J. (2014). Moisture uptake and resulting mechanical response of biobased composites. I. constituents. Polymer Composites, 35(6), 1150–1159. Pupure, L., Newsha D., & Roberts J. (2014). Moisture uptake and resulting mechanical response of biobased composites. I. constituents. Polymer Composites, 35(6), 1150–1159.
23.
Zurück zum Zitat Doroudgarian, N., Liva P., & Roberts J. (2015). Moisture uptake and resulting mechanical response of bio‐based composites. II. Composites. Polymer Composites, 36(8), 1510–1519. Doroudgarian, N., Liva P., & Roberts J. (2015). Moisture uptake and resulting mechanical response of bio‐based composites. II. Composites. Polymer Composites, 36(8), 1510–1519.
24.
Zurück zum Zitat Michel, A. T., & Billington, S. L. (2012). Characterization of poly-hydroxybutyrate films and hemp fiber reinforced composites exposed to accelerated weathering. Polymer Degradation and Stability, 97(6), 870–878.CrossRef Michel, A. T., & Billington, S. L. (2012). Characterization of poly-hydroxybutyrate films and hemp fiber reinforced composites exposed to accelerated weathering. Polymer Degradation and Stability, 97(6), 870–878.CrossRef
25.
Zurück zum Zitat Gómez, E., & Frederick, C. M. (2013). Biodegradability of conventional and bio-based plastics and natural fiber composites during composting, anaerobic digestion and long-term soil incubation. Polymer Degradation and Stability, 98(12), 2583–2591.CrossRef Gómez, E., & Frederick, C. M. (2013). Biodegradability of conventional and bio-based plastics and natural fiber composites during composting, anaerobic digestion and long-term soil incubation. Polymer Degradation and Stability, 98(12), 2583–2591.CrossRef
Metadaten
Titel
Biocomposites from Biofibers and Biopolymers
verfasst von
K. Gopalakrishna
Narendra Reddy
Yi Zhao
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-40301-0_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.