Skip to main content

2018 | OriginalPaper | Buchkapitel

10. Biofuels from Microalgae: Biohydrogen

verfasst von : Harshita Singh, Debabrata Das

Erschienen in: Energy from Microalgae

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Rapid industrialization and urbanization are mainly responsible for the energy crisis, environmental pollution and climate change. In addition, depletion of the fossil fuels is a major concern now. To confront these problems, it is essential to produce energy from sustainable and renewable energy sources. Hydrogen is widely considered as a clean and efficient energy carrier for the future because it does not produce carbon-based emission and has the highest energy density among any other known fuels. Due to the environmental and socioeconomic limitation associated with conventional processes for the hydrogen production, new approaches of producing hydrogen from biological sources have been greatly encouraged. From the perspective of sustainability, microalgae offer a promising source and have several advantages for the biohydrogen production. Microalgae are characterized as high rate of cell growth with superior photosynthetic efficiency and can be grown in brackish or wastewater on non-arable land. In recent years, biohydrogen production from microalgae via photolysis or being used as substrate in dark fermentation is gaining considerable interest. The present chapter describes the different methods involved in hydrogen production from microalgae. Suitability of the microalgae as a feedstock for the dark fermentation is discussed. This review also includes the challenges faced in hydrogen production from microalgae as well as the genetic and metabolic engineering approaches for the enhancement of biohydrogen production.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Almon, H., & Bӧger, P. 1988. Nitrogen and hydrogen metabolism: induction and measurement. Methods in Enzymology, Academic Press, 167. Almon, H., & Bӧger, P. 1988. Nitrogen and hydrogen metabolism: induction and measurement. Methods in Enzymology, Academic Press, 167.
Zurück zum Zitat Baebprasert, W., Lindblad, P., & Incharoensakdi, A. (2010). Response of H2 production and Hox-hydrogenase activity to external factors in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. International Journal of Hydrogen Energy, 35(13), 6611–6616.CrossRef Baebprasert, W., Lindblad, P., & Incharoensakdi, A. (2010). Response of H2 production and Hox-hydrogenase activity to external factors in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. International Journal of Hydrogen Energy, 35(13), 6611–6616.CrossRef
Zurück zum Zitat Batista, A. P., Moura, P., Marques, P. A. S. S., Ortigueira, J., Alves, L., & Gouveia, L. (2014). Scenedesmus obliquus as feedstock for biohydrogen production by Enterobacter aerogenes and Clostridium butyricum. Fuel, 117, 537–543.CrossRef Batista, A. P., Moura, P., Marques, P. A. S. S., Ortigueira, J., Alves, L., & Gouveia, L. (2014). Scenedesmus obliquus as feedstock for biohydrogen production by Enterobacter aerogenes and Clostridium butyricum. Fuel, 117, 537–543.CrossRef
Zurück zum Zitat Benemann, J. R. (2000). Hydrogen production by microalgae. Journal of Applied Phycology, 12, 291–300.CrossRef Benemann, J. R. (2000). Hydrogen production by microalgae. Journal of Applied Phycology, 12, 291–300.CrossRef
Zurück zum Zitat Bernát, G., Waschewski, N., & Rögner, M. (2009). Towards efficient hydrogen production: The impact of antenna size and external factors on electron transport dynamics in Synechocystis PCC 6803. Photosynthesis Research, 99(3), 205–216.CrossRef Bernát, G., Waschewski, N., & Rögner, M. (2009). Towards efficient hydrogen production: The impact of antenna size and external factors on electron transport dynamics in Synechocystis PCC 6803. Photosynthesis Research, 99(3), 205–216.CrossRef
Zurück zum Zitat Borodin, V. B., Tsygankov, A. A., Rao, K. K., & Hall, D. O. (2000). Hydrogen production by Anabaena variabilis PK84 under simulated outdoor conditions. Biotechnology and Bioengineering, 69(5), 478–485.CrossRef Borodin, V. B., Tsygankov, A. A., Rao, K. K., & Hall, D. O. (2000). Hydrogen production by Anabaena variabilis PK84 under simulated outdoor conditions. Biotechnology and Bioengineering, 69(5), 478–485.CrossRef
Zurück zum Zitat Burrows, E. H., Chaplen, F. W. R., & Ely, R. L. (2008). Optimization of media nutrient composition for increased photofermentative hydrogen production by Synechocystis sp. PCC 6803. International Journal of Hydrogen Energy, 33(21), 6092–6099.CrossRef Burrows, E. H., Chaplen, F. W. R., & Ely, R. L. (2008). Optimization of media nutrient composition for increased photofermentative hydrogen production by Synechocystis sp. PCC 6803. International Journal of Hydrogen Energy, 33(21), 6092–6099.CrossRef
Zurück zum Zitat Chen, C. Y., Zhao, X. Q., Yen, H. W., Ho, S. H., Cheng, C. L., Lee, D. J., et al. (2013). Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78, 1–10.CrossRef Chen, C. Y., Zhao, X. Q., Yen, H. W., Ho, S. H., Cheng, C. L., Lee, D. J., et al. (2013). Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78, 1–10.CrossRef
Zurück zum Zitat Cheng, J., Liu, Y., Lin, R., Xia, A., Zhou, J., & Cen, K. (2014). Cogeneration of hydrogen and methane from the pretreated biomass of algae bloom in Taihu Lake. International Journal of Hydrogen Energy, 39(33), 18793–18802.CrossRef Cheng, J., Liu, Y., Lin, R., Xia, A., Zhou, J., & Cen, K. (2014). Cogeneration of hydrogen and methane from the pretreated biomass of algae bloom in Taihu Lake. International Journal of Hydrogen Energy, 39(33), 18793–18802.CrossRef
Zurück zum Zitat Cheng, J., Xia, A., Liu, Y., Lin, R., Zhou, J., & Cen, K. (2012). Combination of dark- and photo-fermentation to improve hydrogen production from Arthrospira platensis wet biomass with ammonium removal by zeolite. International Journal of Hydrogen Energy, 37(18), 13330–13337.CrossRef Cheng, J., Xia, A., Liu, Y., Lin, R., Zhou, J., & Cen, K. (2012). Combination of dark- and photo-fermentation to improve hydrogen production from Arthrospira platensis wet biomass with ammonium removal by zeolite. International Journal of Hydrogen Energy, 37(18), 13330–13337.CrossRef
Zurück zum Zitat Das, D., & Veziroğlu, T. N. (2001). Hydrogen production by biological proceses: A survey of literature. International Journal of Hydrogen Energy, 26, 13–28.CrossRef Das, D., & Veziroğlu, T. N. (2001). Hydrogen production by biological proceses: A survey of literature. International Journal of Hydrogen Energy, 26, 13–28.CrossRef
Zurück zum Zitat Das, D., Khanna, N., & Dasgupta, C. N. (2014). Biohydrogen production: Fundamentals and technology advances. CRC Press, Taylor and Francis Group, LLC.CrossRef Das, D., Khanna, N., & Dasgupta, C. N. (2014). Biohydrogen production: Fundamentals and technology advances. CRC Press, Taylor and Francis Group, LLC.CrossRef
Zurück zum Zitat Doebbe, A., Rupprecht, J., Beckmann, J., Mussgnug, J. H., Hallmann, A., Hankamer, B., et al. (2007). Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H2 production. Journal of Biotechnology, 131(1), 27–33.CrossRef Doebbe, A., Rupprecht, J., Beckmann, J., Mussgnug, J. H., Hallmann, A., Hankamer, B., et al. (2007). Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H2 production. Journal of Biotechnology, 131(1), 27–33.CrossRef
Zurück zum Zitat Eroglu, E., & Melis, A. (2011). Photobiological hydrogen production: Recent advances and state of the art. Bioresource Technology, 102(18), 8403–8413.CrossRef Eroglu, E., & Melis, A. (2011). Photobiological hydrogen production: Recent advances and state of the art. Bioresource Technology, 102(18), 8403–8413.CrossRef
Zurück zum Zitat Fernández-Sevilla, J. M., Acién-Fernández, F. G., & Molina-Grima, E. (2014). Microbial bioenergy: Hydrogen production. Advances in Photosynthesis and Respiration, 38, 291–320.CrossRef Fernández-Sevilla, J. M., Acién-Fernández, F. G., & Molina-Grima, E. (2014). Microbial bioenergy: Hydrogen production. Advances in Photosynthesis and Respiration, 38, 291–320.CrossRef
Zurück zum Zitat Forestier, M., King, P., Zhang, L., Posewitz, M., Schwarzer, S., Happe, T., et al. (2003). Expression of two [Fe] -hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. European Journal of Biochemistry, 270, 2750–2758.CrossRef Forestier, M., King, P., Zhang, L., Posewitz, M., Schwarzer, S., Happe, T., et al. (2003). Expression of two [Fe] -hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. European Journal of Biochemistry, 270, 2750–2758.CrossRef
Zurück zum Zitat Gaffron, H., & Rubin, J. (1942). Fermentatinve and photochemical production of hydrogen in algae. The Journal of General Physiology, 26(2), 219–240.CrossRef Gaffron, H., & Rubin, J. (1942). Fermentatinve and photochemical production of hydrogen in algae. The Journal of General Physiology, 26(2), 219–240.CrossRef
Zurück zum Zitat Genkov, T., Meyer, M., Griffiths, H., & Spreitzer, R. J. (2010). Functional hybrid rubisco enzymes with plant small subunits and algal large subunits: Engineered rbcS cDNA for expression in Chlamydomonas. Journal of Biological Chemistry, 285(26), 19833–19841.CrossRef Genkov, T., Meyer, M., Griffiths, H., & Spreitzer, R. J. (2010). Functional hybrid rubisco enzymes with plant small subunits and algal large subunits: Engineered rbcS cDNA for expression in Chlamydomonas. Journal of Biological Chemistry, 285(26), 19833–19841.CrossRef
Zurück zum Zitat Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P. N. L., et al. (2015). A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Applied Energy, 144, 73–95.CrossRef Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P. N. L., et al. (2015). A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Applied Energy, 144, 73–95.CrossRef
Zurück zum Zitat Ghirardi, M. L., Togasaki, R. K., & Seibert, M. (1997). Oxygen sensitivity of Algal H2-production. Applied Biochemistry and Biotechnology, 63–65, 141–151.CrossRef Ghirardi, M. L., Togasaki, R. K., & Seibert, M. (1997). Oxygen sensitivity of Algal H2-production. Applied Biochemistry and Biotechnology, 63–65, 141–151.CrossRef
Zurück zum Zitat Ghirardi, M. L., Zhang, L., Lee, J. W., Flynn, T., Seibert, M., Greenbaum, E., et al. (2000). Microalgae: A green source of renewable H2. Trends in Biotechnology, 18(12), 506–511.CrossRef Ghirardi, M. L., Zhang, L., Lee, J. W., Flynn, T., Seibert, M., Greenbaum, E., et al. (2000). Microalgae: A green source of renewable H2. Trends in Biotechnology, 18(12), 506–511.CrossRef
Zurück zum Zitat Ghosh, S., Roy, S., & Das, D. (2017). Enhancement in lipid content of Chlorella sp. MJ11/11 from the spent medium of thermophilic biohydrogen production process. Bioresource Technology, 223, 219–226.CrossRef Ghosh, S., Roy, S., & Das, D. (2017). Enhancement in lipid content of Chlorella sp. MJ11/11 from the spent medium of thermophilic biohydrogen production process. Bioresource Technology, 223, 219–226.CrossRef
Zurück zum Zitat Greenbaum, E. (1982). Photosynthetic hydrogen and oxygen production: Kinetic studies. Science (New York), 215(4530), 291–293.CrossRef Greenbaum, E. (1982). Photosynthetic hydrogen and oxygen production: Kinetic studies. Science (New York), 215(4530), 291–293.CrossRef
Zurück zum Zitat Happe, T., Hemschemeier, A., Winkler, M., & Kaminski, A. (2002). Hydrogenases in green algae: Do they save the algae’s life and solve our energy problems? Trends in Plant Science, 7(6), 246–250.CrossRef Happe, T., Hemschemeier, A., Winkler, M., & Kaminski, A. (2002). Hydrogenases in green algae: Do they save the algae’s life and solve our energy problems? Trends in Plant Science, 7(6), 246–250.CrossRef
Zurück zum Zitat Happe, T., Schütz, K., & Böhme, H. (2000). Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Journal of Bacteriology, 182(6), 1624–1631.CrossRef Happe, T., Schütz, K., & Böhme, H. (2000). Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Journal of Bacteriology, 182(6), 1624–1631.CrossRef
Zurück zum Zitat Harun, R., Yip, J. W. S., Thiruvenkadam, S., Ghani, W. A. W. A. K., Cherrington, T., & Danquah, M. K. (2014). Algal biomass conversion to bioethanol-a step-by-step assessment. Biotechnology Journal, 9(1), 73–86.CrossRef Harun, R., Yip, J. W. S., Thiruvenkadam, S., Ghani, W. A. W. A. K., Cherrington, T., & Danquah, M. K. (2014). Algal biomass conversion to bioethanol-a step-by-step assessment. Biotechnology Journal, 9(1), 73–86.CrossRef
Zurück zum Zitat Hernández, D., Riaño, B., Coca, M., & García-González, M. C. (2015). Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chemical Engineering Journal, 262, 939–945.CrossRef Hernández, D., Riaño, B., Coca, M., & García-González, M. C. (2015). Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chemical Engineering Journal, 262, 939–945.CrossRef
Zurück zum Zitat Ho, S. H., Chen, C. Y., & Chang, J. S. (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113, 244–252.CrossRef Ho, S. H., Chen, C. Y., & Chang, J. S. (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113, 244–252.CrossRef
Zurück zum Zitat Ho, S. H., Huang, S. W., Chen, C. Y., Hasunuma, T., Kondo, A., & Chang, J. S. (2013). Bioethanol production using carbohydrate rich micraolgae biomass as feedstock. Bioresource Technology, 135, 191–198.CrossRef Ho, S. H., Huang, S. W., Chen, C. Y., Hasunuma, T., Kondo, A., & Chang, J. S. (2013). Bioethanol production using carbohydrate rich micraolgae biomass as feedstock. Bioresource Technology, 135, 191–198.CrossRef
Zurück zum Zitat Holladay, J. D., Hu, J., King, D. L., & Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis Today, 139(4), 244–260.CrossRef Holladay, J. D., Hu, J., King, D. L., & Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis Today, 139(4), 244–260.CrossRef
Zurück zum Zitat Hom-Diaz, A., Passos, F., Ferrer, I., Vicent, T., & Blánquez, P. (2016). Enzymatic pretreatment of microalgae using fungal broth from Trametes versicolor and commercial laccase for improved biogas production. Algal Research, 19, 184–188.CrossRef Hom-Diaz, A., Passos, F., Ferrer, I., Vicent, T., & Blánquez, P. (2016). Enzymatic pretreatment of microalgae using fungal broth from Trametes versicolor and commercial laccase for improved biogas production. Algal Research, 19, 184–188.CrossRef
Zurück zum Zitat Khan, M. I., Lee, M. G., Shin, J. H., & Kim, J. D. (2017). Pretreatment optimization of the biomass of Microcystis aeruginosa for efficient bioethanol production. AMB Expr, 7(19), 1–9. Khan, M. I., Lee, M. G., Shin, J. H., & Kim, J. D. (2017). Pretreatment optimization of the biomass of Microcystis aeruginosa for efficient bioethanol production. AMB Expr, 7(19), 1–9.
Zurück zum Zitat Khetkorn, W., Lindblad, P., & Incharoensakdi, A. (2012). Inactivation of uptake hydrogenase leads to enhanced and sustained hydrogen production with high nitrogenase activity under high light exposure in the cyanobacterium Anabaena siamensis TISTR 8012. Journal of Biological Engineering, 6(19), 1–11. Khetkorn, W., Lindblad, P., & Incharoensakdi, A. (2012). Inactivation of uptake hydrogenase leads to enhanced and sustained hydrogen production with high nitrogenase activity under high light exposure in the cyanobacterium Anabaena siamensis TISTR 8012. Journal of Biological Engineering, 6(19), 1–11.
Zurück zum Zitat Kim, D.-H., & Kim, M.-S. (2011). Hydrogenases for biological hydrogen production. Bioresource Technology, 102(18), 8423–8431.CrossRef Kim, D.-H., & Kim, M.-S. (2011). Hydrogenases for biological hydrogen production. Bioresource Technology, 102(18), 8423–8431.CrossRef
Zurück zum Zitat Kosourov, S., Makarova, V., Fedorov, A. S., Tsygankov, A., Seibert, M., & Ghirardi, M. L. (2005). The effect of sulfur re-addition on H2 photoproduction by sulfur-deprived green algae. Photosynthesis Research, 85, 295–305.CrossRef Kosourov, S., Makarova, V., Fedorov, A. S., Tsygankov, A., Seibert, M., & Ghirardi, M. L. (2005). The effect of sulfur re-addition on H2 photoproduction by sulfur-deprived green algae. Photosynthesis Research, 85, 295–305.CrossRef
Zurück zum Zitat Kosourov, S., Tsygankov, A., Seibert, M., & Ghirardi, M. L. (2002). Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters. Biotechnology and Bioengineering, 78(7), 731–740.CrossRef Kosourov, S., Tsygankov, A., Seibert, M., & Ghirardi, M. L. (2002). Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters. Biotechnology and Bioengineering, 78(7), 731–740.CrossRef
Zurück zum Zitat Kosourov, S. N., Ghirardi, M. L., & Seibert, M. (2011). A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain. International Journal of Hydrogen Energy, 36(3), 2044–2048.CrossRef Kosourov, S. N., Ghirardi, M. L., & Seibert, M. (2011). A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain. International Journal of Hydrogen Energy, 36(3), 2044–2048.CrossRef
Zurück zum Zitat Kumar, K., Roy, S., & Das, D. (2013). Continuous mode of carbon dioxide sequestration by C. sorokiniana and subsequent use of its biomass for hydrogen production by E. cloacae IIT-BT 08. Bioresource Technology, 145, 116–122.CrossRef Kumar, K., Roy, S., & Das, D. (2013). Continuous mode of carbon dioxide sequestration by C. sorokiniana and subsequent use of its biomass for hydrogen production by E. cloacae IIT-BT 08. Bioresource Technology, 145, 116–122.CrossRef
Zurück zum Zitat Lakaniemi, A. M., Hulatt, C. J., Thomas, D. N., Tuovinen, O. H., & Puhakka, J. A. (2011). Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnology for Biofuels, 4(1), 34.CrossRef Lakaniemi, A. M., Hulatt, C. J., Thomas, D. N., Tuovinen, O. H., & Puhakka, J. A. (2011). Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnology for Biofuels, 4(1), 34.CrossRef
Zurück zum Zitat Laurinavichene, T. V., Fedorov, A. S., Ghirardi, M. L., Seibert, M., & Tsygankov, A. A. (2006). Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells. International Journal of Hydrogen Energy, 31(5), 659–667.CrossRef Laurinavichene, T. V., Fedorov, A. S., Ghirardi, M. L., Seibert, M., & Tsygankov, A. A. (2006). Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells. International Journal of Hydrogen Energy, 31(5), 659–667.CrossRef
Zurück zum Zitat Lay, C. H., Sen, B., Chen, C. C., Wu, J. H., Lee, S. C., & Lin, C. Y. (2013). Co-fermentation of water hyacinth and beverage wastewater in powder and pellet form for hydrogen production. Bioresource Technology, 135, 610–615.CrossRef Lay, C. H., Sen, B., Chen, C. C., Wu, J. H., Lee, S. C., & Lin, C. Y. (2013). Co-fermentation of water hyacinth and beverage wastewater in powder and pellet form for hydrogen production. Bioresource Technology, 135, 610–615.CrossRef
Zurück zum Zitat Levin, D. B., Pitt, L., & Love, M. (2004). Biohydrogen production: Prospects and limitations to practical application. International Journal of Hydrogen Energy, 29(2), 173–185.CrossRef Levin, D. B., Pitt, L., & Love, M. (2004). Biohydrogen production: Prospects and limitations to practical application. International Journal of Hydrogen Energy, 29(2), 173–185.CrossRef
Zurück zum Zitat Lindblad, P., Christensson, K., Lindberg, P., Fedorov, A., Pinto, F., & Tsygankov, A. (2002). Photoproduction of H2 by wildtype Anabaena PCC 7120 and a hydrogen uptake deficient mutant: From laboratory experiments to outdoor culture. International Journal of Hydrogen, 27, 1271–1281.CrossRef Lindblad, P., Christensson, K., Lindberg, P., Fedorov, A., Pinto, F., & Tsygankov, A. (2002). Photoproduction of H2 by wildtype Anabaena PCC 7120 and a hydrogen uptake deficient mutant: From laboratory experiments to outdoor culture. International Journal of Hydrogen, 27, 1271–1281.CrossRef
Zurück zum Zitat Liu, C. H., Chang, C. Y., Cheng, C. L., Lee, D. J., & Chang, J. S. (2012). Fermentative hydrogen production by Clostridium butyricum CGS5 using carbohydrate-rich microalgal biomass as feedstock. International Journal of Hydrogen Energy, 37(20), 15458–15464.CrossRef Liu, C. H., Chang, C. Y., Cheng, C. L., Lee, D. J., & Chang, J. S. (2012). Fermentative hydrogen production by Clostridium butyricum CGS5 using carbohydrate-rich microalgal biomass as feedstock. International Journal of Hydrogen Energy, 37(20), 15458–15464.CrossRef
Zurück zum Zitat Márquez-Reyes, L. A., Sánchez-Saavedra, M. D. P., & Valdez-Vazquez, I. (2015). Improvement of hydrogen production by reduction of the photosynthetic oxygen in microalgae cultures of Chlamydomonas gloeopara and Scenedesmus obliquus. International Journal of Hydrogen Energy, 40(23), 7291–7300.CrossRef Márquez-Reyes, L. A., Sánchez-Saavedra, M. D. P., & Valdez-Vazquez, I. (2015). Improvement of hydrogen production by reduction of the photosynthetic oxygen in microalgae cultures of Chlamydomonas gloeopara and Scenedesmus obliquus. International Journal of Hydrogen Energy, 40(23), 7291–7300.CrossRef
Zurück zum Zitat Markou, G., Angelidaki, I., & Georgakakis, D. (2012a). Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied Microbiology and Biotechnology, 96(3), 631–645.CrossRef Markou, G., Angelidaki, I., & Georgakakis, D. (2012a). Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied Microbiology and Biotechnology, 96(3), 631–645.CrossRef
Zurück zum Zitat Markou, G., Chatzipavlidis, I., & Georgakakis, D. (2012b). Cultivation of Arthrospira (Spirulina) platensis in olive-oil mill wastewater treated with sodium hypochlorite. Bioresource Technology, 112, 234–241.CrossRef Markou, G., Chatzipavlidis, I., & Georgakakis, D. (2012b). Cultivation of Arthrospira (Spirulina) platensis in olive-oil mill wastewater treated with sodium hypochlorite. Bioresource Technology, 112, 234–241.CrossRef
Zurück zum Zitat Masukawa, H., Mochimaru, M., & Sakurai, H. (2002). Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Applied Microbiology and Biotechnology, 58(5), 618–624.CrossRef Masukawa, H., Mochimaru, M., & Sakurai, H. (2002). Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Applied Microbiology and Biotechnology, 58(5), 618–624.CrossRef
Zurück zum Zitat McKinlay, J. B., & Harwood, C. S. (2010). Photobiological production of hydrogen gas as a biofuel. Current Opinion in Biotechnology, 21(3), 244–251.CrossRef McKinlay, J. B., & Harwood, C. S. (2010). Photobiological production of hydrogen gas as a biofuel. Current Opinion in Biotechnology, 21(3), 244–251.CrossRef
Zurück zum Zitat Melis, A., Zhang, L., Forestier, M., Ghirardi, M. L., & Seibert, M. (2000). Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green Alga Chlamydomonas reinhardtii. Plant Physiology, 122, 127–135.CrossRef Melis, A., Zhang, L., Forestier, M., Ghirardi, M. L., & Seibert, M. (2000). Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green Alga Chlamydomonas reinhardtii. Plant Physiology, 122, 127–135.CrossRef
Zurück zum Zitat Mikheeva, L. E., Schmitz, O., Shestakov, S. V., & Bothe, H. (1995). Mutants of the cyanobacterium Anabaena variabilis altered in hydrogenase activities. Z. Natutforsch, 50, 505–510. Mikheeva, L. E., Schmitz, O., Shestakov, S. V., & Bothe, H. (1995). Mutants of the cyanobacterium Anabaena variabilis altered in hydrogenase activities. Z. Natutforsch, 50, 505–510.
Zurück zum Zitat Miranda, J. R., Passarinho, P. C., & Gouveia, L. (2012). Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresource Technology, 104, 342–348.CrossRef Miranda, J. R., Passarinho, P. C., & Gouveia, L. (2012). Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresource Technology, 104, 342–348.CrossRef
Zurück zum Zitat Miura, Y., Akano, T., Fukatsu, K., Miyasaka, H., Mizoguchi, T., Yagi, K., et al. (1997). Stably sustained hydrogen production by biophotolysis in natural day/night cycle. Energy Conservation Management, 38, 533–537.CrossRef Miura, Y., Akano, T., Fukatsu, K., Miyasaka, H., Mizoguchi, T., Yagi, K., et al. (1997). Stably sustained hydrogen production by biophotolysis in natural day/night cycle. Energy Conservation Management, 38, 533–537.CrossRef
Zurück zum Zitat Monlau, F., Sambusiti, C., Barakat, A., Quéméneur, M., Trably, E., Steyer, J. P., et al. (2014). Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnology Advances, 32(5), 934–951.CrossRef Monlau, F., Sambusiti, C., Barakat, A., Quéméneur, M., Trably, E., Steyer, J. P., et al. (2014). Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnology Advances, 32(5), 934–951.CrossRef
Zurück zum Zitat Montingelli, M. E., Tedesco, S., & Olabi, A. G. (2015). Biogas production from algal biomass: A review. Renewable and Sustainable Energy Reviews, 43, 961–972.CrossRef Montingelli, M. E., Tedesco, S., & Olabi, A. G. (2015). Biogas production from algal biomass: A review. Renewable and Sustainable Energy Reviews, 43, 961–972.CrossRef
Zurück zum Zitat Mussgnug, J. H., Klassen, V., Schlüter, A., & Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 150(1), 51–56.CrossRef Mussgnug, J. H., Klassen, V., Schlüter, A., & Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 150(1), 51–56.CrossRef
Zurück zum Zitat Mussgnug, J. H., Thomas-Hall, S., Rupprecht, J., Foo, A., Klassen, V., & McDowall, A., et al. (2007). Engineering photosynthetic light capture: Impacts on improved solar energy to biomass conversion. Plant Biotechnology Journal, 5(6), 802–814.CrossRef Mussgnug, J. H., Thomas-Hall, S., Rupprecht, J., Foo, A., Klassen, V., & McDowall, A., et al. (2007). Engineering photosynthetic light capture: Impacts on improved solar energy to biomass conversion. Plant Biotechnology Journal, 5(6), 802–814.CrossRef
Zurück zum Zitat Nayak, B. K., Roy, S., & Das, D. (2014). Biohydrogen production from algal biomass (Anabaena sp. PCC 7120) cultivated in airlift photobioreactor. International Journal of Hydrogen Energy, 39, 7553–7560.CrossRef Nayak, B. K., Roy, S., & Das, D. (2014). Biohydrogen production from algal biomass (Anabaena sp. PCC 7120) cultivated in airlift photobioreactor. International Journal of Hydrogen Energy, 39, 7553–7560.CrossRef
Zurück zum Zitat Nguyen, T. A. D., Kim, K. R., Nguyen, M. T., Kim, M. S., Kim, D., & Sim, S. J. (2010). Enhancement of fermentative hydrogen production from green algal biomass of Thermotoga neapolitana by various pretreatment methods. International Journal of Hydrogen Energy, 35(23), 13035–13040.CrossRef Nguyen, T. A. D., Kim, K. R., Nguyen, M. T., Kim, M. S., Kim, D., & Sim, S. J. (2010). Enhancement of fermentative hydrogen production from green algal biomass of Thermotoga neapolitana by various pretreatment methods. International Journal of Hydrogen Energy, 35(23), 13035–13040.CrossRef
Zurück zum Zitat Nobre, B. P., Villalobos, F., Barragán, B. E., Oliveira, A. C., Batista, A. P., Marques, P. A. S. S., et al. (2013). A biorefinary from Nannchloropsis sp. microalga - Extraction of oils and pigments. Production of biohydrogen from the leftcover biomass. Bioresource Tecnology, 135, 128–136.CrossRef Nobre, B. P., Villalobos, F., Barragán, B. E., Oliveira, A. C., Batista, A. P., Marques, P. A. S. S., et al. (2013). A biorefinary from Nannchloropsis sp. microalga - Extraction of oils and pigments. Production of biohydrogen from the leftcover biomass. Bioresource Tecnology, 135, 128–136.CrossRef
Zurück zum Zitat Nyberg, M., Heidorn, T., & Lindblad, P. (2015). Hydrogen production by the engineered cyanobacterial strain Nostoc PCC 7120 δhupW examined in a flat panel photobioreactor system. Journal of Biotechnology, 215, 35–43.CrossRef Nyberg, M., Heidorn, T., & Lindblad, P. (2015). Hydrogen production by the engineered cyanobacterial strain Nostoc PCC 7120 δhupW examined in a flat panel photobioreactor system. Journal of Biotechnology, 215, 35–43.CrossRef
Zurück zum Zitat Ortigueira, J., Alves, L., Gouveia, L., & Moura, P. (2015). Third generation biohydrogen production by Clostridium butyricum and adapted mixed cultures from Scenedesmus obliquus microalga biomass. Fuel, 153, 128–134.CrossRef Ortigueira, J., Alves, L., Gouveia, L., & Moura, P. (2015). Third generation biohydrogen production by Clostridium butyricum and adapted mixed cultures from Scenedesmus obliquus microalga biomass. Fuel, 153, 128–134.CrossRef
Zurück zum Zitat Oey, M., Sawyer, A. L., Ross, I. L., & Hankamer, B. (2016). Challenges and opportunities for hydrogen production from microalgae. Plant Biotechnology Journal, 14(7), 1487–1499.CrossRef Oey, M., Sawyer, A. L., Ross, I. L., & Hankamer, B. (2016). Challenges and opportunities for hydrogen production from microalgae. Plant Biotechnology Journal, 14(7), 1487–1499.CrossRef
Zurück zum Zitat Vignais, P. M., & Colbeau, A. (2004). Molecular biology of microbial hydrogenases. Current Issues in Molecular Biology, 6, 159–188. Vignais, P. M., & Colbeau, A. (2004). Molecular biology of microbial hydrogenases. Current Issues in Molecular Biology, 6, 159–188.
Zurück zum Zitat Pancha, I., Chokshi, K., & Mishra, S. (2015). Enhanced biofuel production potential with nutritional stress amelioration through optimization of carbon source and light intensity in Scenedesmus sp. CCNM 1077. Bioresource Technology, 179, 565–572.CrossRef Pancha, I., Chokshi, K., & Mishra, S. (2015). Enhanced biofuel production potential with nutritional stress amelioration through optimization of carbon source and light intensity in Scenedesmus sp. CCNM 1077. Bioresource Technology, 179, 565–572.CrossRef
Zurück zum Zitat Patel, V. K., Maji, D., Pandey, S. S., Rout, P. K., Sundaram, S., & Kalra, A. (2016). Rapid budding EMS mutants of Synechocystis PCC 6803 producing carbohydrate or lipid enriched biomass. Algal Research, 16, 36–45.CrossRef Patel, V. K., Maji, D., Pandey, S. S., Rout, P. K., Sundaram, S., & Kalra, A. (2016). Rapid budding EMS mutants of Synechocystis PCC 6803 producing carbohydrate or lipid enriched biomass. Algal Research, 16, 36–45.CrossRef
Zurück zum Zitat Peters, J. W., Lanzilotta, W. N., Lemon, B. J., & Seefeldt, L. C. (1998). X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom resolution. Science (New York), 282(5395), 1853–1858.CrossRef Peters, J. W., Lanzilotta, W. N., Lemon, B. J., & Seefeldt, L. C. (1998). X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom resolution. Science (New York), 282(5395), 1853–1858.CrossRef
Zurück zum Zitat Peters, J. W., Schut, G. J., Boyd, E. S., Mulder, D. W., Shepard, E. M., Broderick, J. B., et al. (2015). [FeFe] - and [NiFe] -hydrogenase diversity, mechanism, and maturation. Biochimica et Biophysica Acta, 1853, 1350–1369.CrossRef Peters, J. W., Schut, G. J., Boyd, E. S., Mulder, D. W., Shepard, E. M., Broderick, J. B., et al. (2015). [FeFe] - and [NiFe] -hydrogenase diversity, mechanism, and maturation. Biochimica et Biophysica Acta, 1853, 1350–1369.CrossRef
Zurück zum Zitat Polle, J. E. W., Kanakagiri, S., Jin, E., Masuda, T., & Melis, A. (2002). Truncated chlorophyll antenna size of the photosystems—A practical method to improve microalgal productivity and hydrogen production in mass culture. International Journal of Hydrogen Energy, 27(11–12), 1257–1264.CrossRef Polle, J. E. W., Kanakagiri, S., Jin, E., Masuda, T., & Melis, A. (2002). Truncated chlorophyll antenna size of the photosystems—A practical method to improve microalgal productivity and hydrogen production in mass culture. International Journal of Hydrogen Energy, 27(11–12), 1257–1264.CrossRef
Zurück zum Zitat Prajapati, S. K., Bhattacharya, A., Malik, A., & Vijay, V. K. (2015). Pretreatment of algal biomass using fungal crude enzymes. Algal Research, 8, 8–14.CrossRef Prajapati, S. K., Bhattacharya, A., Malik, A., & Vijay, V. K. (2015). Pretreatment of algal biomass using fungal crude enzymes. Algal Research, 8, 8–14.CrossRef
Zurück zum Zitat Radakovits, R., Jinkerson, R. E., Darzins, A., & Posewitz, M. C. (2010). Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell, 9(4), 486–501.CrossRef Radakovits, R., Jinkerson, R. E., Darzins, A., & Posewitz, M. C. (2010). Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell, 9(4), 486–501.CrossRef
Zurück zum Zitat Randt, C., & Senger, H. (1985). Participation of the two photosystems in light dependent hydrogen evolution in Scenedesmus obliquus. Photochemistry and Photobiology, 42(5), 553–557.CrossRef Randt, C., & Senger, H. (1985). Participation of the two photosystems in light dependent hydrogen evolution in Scenedesmus obliquus. Photochemistry and Photobiology, 42(5), 553–557.CrossRef
Zurück zum Zitat Rismani-Yazdi, H., Haznedaroglu, B. Z., Bibby, K., & Peccia, J. (2011). Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels. BMC Genomics, 12(1), 148.CrossRef Rismani-Yazdi, H., Haznedaroglu, B. Z., Bibby, K., & Peccia, J. (2011). Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels. BMC Genomics, 12(1), 148.CrossRef
Zurück zum Zitat Roy, S., Kumar, K., Ghosh, S., & Das, D. (2014). Thermophilic biohydrogen production using pre-treated algal biomass as substrate. Biomass and Bioenergy, 61, 157–166.CrossRef Roy, S., Kumar, K., Ghosh, S., & Das, D. (2014). Thermophilic biohydrogen production using pre-treated algal biomass as substrate. Biomass and Bioenergy, 61, 157–166.CrossRef
Zurück zum Zitat Sambusiti, C., Bellucci, M., Zabaniotou, A., Beneduce, L., & Monlau, F. (2015). Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: A comprehensive review. Renewable and Sustainable Energy Reviews, 44, 20–36.CrossRef Sambusiti, C., Bellucci, M., Zabaniotou, A., Beneduce, L., & Monlau, F. (2015). Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: A comprehensive review. Renewable and Sustainable Energy Reviews, 44, 20–36.CrossRef
Zurück zum Zitat Shi, X. Y., & Yu, H. Q. (2016). Simultaneous metabolism of benzoate and photobiological hydrogen production by Lyngbya sp. Renewable Energy, 95, 474–477.CrossRef Shi, X. Y., & Yu, H. Q. (2016). Simultaneous metabolism of benzoate and photobiological hydrogen production by Lyngbya sp. Renewable Energy, 95, 474–477.CrossRef
Zurück zum Zitat Stripp, S. T., Goldet, G., Brandmayr, C., Sanganas, O., Vincent, K. A., Haumann, M., et al. (2009). How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17331–17336.CrossRef Stripp, S. T., Goldet, G., Brandmayr, C., Sanganas, O., Vincent, K. A., Haumann, M., et al. (2009). How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17331–17336.CrossRef
Zurück zum Zitat Su, H. Y., Lee, T. M., Huang, Y. L., Chou, S. H., Wang, J. B., Lin, L. F., et al. (2011). Increased cellulose production by heterologous expression of cellulose synthase genes in a filamentous heterocystous cyanobacterium with a modification in photosynthesis performance and growth ability. Botanical Studies, 52, 265–275. Su, H. Y., Lee, T. M., Huang, Y. L., Chou, S. H., Wang, J. B., Lin, L. F., et al. (2011). Increased cellulose production by heterologous expression of cellulose synthase genes in a filamentous heterocystous cyanobacterium with a modification in photosynthesis performance and growth ability. Botanical Studies, 52, 265–275.
Zurück zum Zitat Taikhao, S., Junyapoon, S., Incharoensakdi, A., & Phunpruch, S. (2013). Factors affecting biohydrogen production by unicellular halotolerant cyanobacterium Aphanothece halophytica. Journal of Applied Phycology, 25(2), 575–585.CrossRef Taikhao, S., Junyapoon, S., Incharoensakdi, A., & Phunpruch, S. (2013). Factors affecting biohydrogen production by unicellular halotolerant cyanobacterium Aphanothece halophytica. Journal of Applied Phycology, 25(2), 575–585.CrossRef
Zurück zum Zitat Tamagnini, P., Axelsson, R., Lindberg, P., Oxelfelt, F., Wünschiers, R., & Lindblad, P. (2002). Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiology and Molecular Biology Reviews, 66(1), 1–20.CrossRef Tamagnini, P., Axelsson, R., Lindberg, P., Oxelfelt, F., Wünschiers, R., & Lindblad, P. (2002). Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiology and Molecular Biology Reviews, 66(1), 1–20.CrossRef
Zurück zum Zitat Tiwari, A., & Pandey, A. (2012). Cyanobacterial hydrogen production—A step towards clean environment. International Journal of Hydrogen Energy, 37(1), 139–150.CrossRef Tiwari, A., & Pandey, A. (2012). Cyanobacterial hydrogen production—A step towards clean environment. International Journal of Hydrogen Energy, 37(1), 139–150.CrossRef
Zurück zum Zitat Torzillo, G., Scoma, A., Faraloni, C., Ena, A., & Johanningmeier, U. (2009). Increased hydrogen photoproduction by means of a sulfur-deprived Chlamydomonas reinhardtii D1 protein mutant. International Journal of Hydrogen Energy, 34(10), 4529–4536.CrossRef Torzillo, G., Scoma, A., Faraloni, C., Ena, A., & Johanningmeier, U. (2009). Increased hydrogen photoproduction by means of a sulfur-deprived Chlamydomonas reinhardtii D1 protein mutant. International Journal of Hydrogen Energy, 34(10), 4529–4536.CrossRef
Zurück zum Zitat Torzillo, G., Scoma, A., Faraloni, C., & Giannelli, L. (2015). Advances in biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii. Critical reviews in Biotecnology, 35(4), 485–496.CrossRef Torzillo, G., Scoma, A., Faraloni, C., & Giannelli, L. (2015). Advances in biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii. Critical reviews in Biotecnology, 35(4), 485–496.CrossRef
Zurück zum Zitat Torzillo, G., & Seibert, M. 2013. Hydrogen production by Chlamydomonas reinhardtii. In Handbook of microalgal culture: Applied phycology and biotechnology, pp. 417–432.CrossRef Torzillo, G., & Seibert, M. 2013. Hydrogen production by Chlamydomonas reinhardtii. In Handbook of microalgal culture: Applied phycology and biotechnology, pp. 417–432.CrossRef
Zurück zum Zitat Troshina, O., Serebryakova, L., Sheremetieva, M., & Lindblad, P. (2002). Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. International Journal of Hydrogen Energy, 27(11–12), 1283–1289.CrossRef Troshina, O., Serebryakova, L., Sheremetieva, M., & Lindblad, P. (2002). Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. International Journal of Hydrogen Energy, 27(11–12), 1283–1289.CrossRef
Zurück zum Zitat Tsygankov, A. A., Fedorov, A. S., Kosourov, S. N., & Rao, K. K. (2002). Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions. Biotechnology and Bioengineering, 80(7), 777–783.CrossRef Tsygankov, A. A., Fedorov, A. S., Kosourov, S. N., & Rao, K. K. (2002). Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions. Biotechnology and Bioengineering, 80(7), 777–783.CrossRef
Zurück zum Zitat Tsygankov, A. A., Kosourov, S. N., Tolstygina, I. V., Ghirardi, M. L., & Seibert, M. (2006). Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. International Journal of Hydrogen Energy, 31, 1574–1584.CrossRef Tsygankov, A. A., Kosourov, S. N., Tolstygina, I. V., Ghirardi, M. L., & Seibert, M. (2006). Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. International Journal of Hydrogen Energy, 31, 1574–1584.CrossRef
Zurück zum Zitat Vitova, M., Bisova, K., Kawano, S., & Zachleder, V. (2015). Accumulation of energy reserves in algae: From cell cycles to biotechnological applications. Biotechnology Advances, 33(6), 1204–1218.CrossRef Vitova, M., Bisova, K., Kawano, S., & Zachleder, V. (2015). Accumulation of energy reserves in algae: From cell cycles to biotechnological applications. Biotechnology Advances, 33(6), 1204–1218.CrossRef
Zurück zum Zitat Wang, J., & Yin, Y. (2017). Bihydrogen production from organic wastes. In Green energy and technology (pp. 123–195), Springer Nature. Wang, J., & Yin, Y. (2017). Bihydrogen production from organic wastes. In Green energy and technology (pp. 123–195), Springer Nature.
Zurück zum Zitat Wu, S., Huang, R., Xu, L., Yan, G., & Wang, Q. (2010). Improved hydrogen production with expression of hemH and lba genes in chloroplast of Chlamydomonas reinhardtii. Journal of Biotechnology, 146, 120–125.CrossRef Wu, S., Huang, R., Xu, L., Yan, G., & Wang, Q. (2010). Improved hydrogen production with expression of hemH and lba genes in chloroplast of Chlamydomonas reinhardtii. Journal of Biotechnology, 146, 120–125.CrossRef
Zurück zum Zitat Xia, A., Cheng, J., Ding, L., Lin, R., Song, W., Zhou, J., et al. (2014). Enhancement of energy production efficiency from mixed biomass of Chlorella pyrenoidosa and cassava starch through combined hydrogen fermentation and methanogenesis. Applied Energy, 120, 23–30.CrossRef Xia, A., Cheng, J., Ding, L., Lin, R., Song, W., Zhou, J., et al. (2014). Enhancement of energy production efficiency from mixed biomass of Chlorella pyrenoidosa and cassava starch through combined hydrogen fermentation and methanogenesis. Applied Energy, 120, 23–30.CrossRef
Zurück zum Zitat Xia, A., Cheng, J., Lin, R., Lu, H., Zhou, J., & Cen, K. (2013). Comparison in dark hydrogen fermentation followed by photo hydrogen fermentation and methanogenesis between protein and carbohydrate compositions in Nannochloropsis oceanica biomass. Bioresource Technology, 138, 204–213.CrossRef Xia, A., Cheng, J., Lin, R., Lu, H., Zhou, J., & Cen, K. (2013). Comparison in dark hydrogen fermentation followed by photo hydrogen fermentation and methanogenesis between protein and carbohydrate compositions in Nannochloropsis oceanica biomass. Bioresource Technology, 138, 204–213.CrossRef
Zurück zum Zitat Xia, A., Cheng, J., Song, W., Su, H., Ding, L., Lin, R., et al. (2015). Fermentative hydrogen production using algal biomass as feedstock. Renewable and Sustainable Energy Reviews, 51, 209–230.CrossRef Xia, A., Cheng, J., Song, W., Su, H., Ding, L., Lin, R., et al. (2015). Fermentative hydrogen production using algal biomass as feedstock. Renewable and Sustainable Energy Reviews, 51, 209–230.CrossRef
Zurück zum Zitat Xu, Q., Yooseph, S., Smith, H.O., Venter, C.J. 2005. Development of a novel recombinant cyanobacterial system for hydrogen production from water. Paper presented at Genomics: GTL Program Projects, Rockville. Xu, Q., Yooseph, S., Smith, H.O., Venter, C.J. 2005. Development of a novel recombinant cyanobacterial system for hydrogen production from water. Paper presented at Genomics: GTL Program Projects, Rockville.
Zurück zum Zitat Yang, Z., Guo, R., Xu, X., Fan, X., & Li, X. (2010). Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. International Journal of Hydrogen Energy, 35, 9618–9623.CrossRef Yang, Z., Guo, R., Xu, X., Fan, X., & Li, X. (2010). Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. International Journal of Hydrogen Energy, 35, 9618–9623.CrossRef
Zurück zum Zitat Yu, J., & Takahashi, P. (2007). Biophotolysis-based hydrogen production by cyanobacteria and green microalgae. Trends in Applied Microbiology, 1, 79–89. Yu, J., & Takahashi, P. (2007). Biophotolysis-based hydrogen production by cyanobacteria and green microalgae. Trends in Applied Microbiology, 1, 79–89.
Zurück zum Zitat Zhu, X.-G., Long, S. P., & Ort, D. R. (2010). Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 61(1), 235–261.CrossRef Zhu, X.-G., Long, S. P., & Ort, D. R. (2010). Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 61(1), 235–261.CrossRef
Metadaten
Titel
Biofuels from Microalgae: Biohydrogen
verfasst von
Harshita Singh
Debabrata Das
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-69093-3_10