Skip to main content

2013 | OriginalPaper | Buchkapitel

Bioinformatic Analysis of Data Generated from MALDI Mass Spectrometry for Biomarker Discovery

verfasst von : Zengyou He, Robert Z. Qi, Weichuan Yu

Erschienen in: Applications of MALDI-TOF Spectroscopy

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter we first describe the applications of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) in biomarker discovery. After a summary of the general analysis pipeline of MALDI MS data, each step of the pipeline will be elaborated in detail. In particular we try to provide a categorization of existing solutions with the hope that the reader can obtain a global picture on this topic. In addition we show how to apply such an analysis pipeline in protein and glycan profiling for biomarker discovery and for a deeper understanding of diseases. Finally we discuss the limitations of current analysis methods and the perspectives of future research.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rifai N, Gillette M, Carr S (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24(8):971–983CrossRef Rifai N, Gillette M, Carr S (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24(8):971–983CrossRef
2.
Zurück zum Zitat Koomen J, Shih L, Coombes K, Li D, Xiao L, Fidler I, Abbruzzese J, Kobayashi R (2005) Plasma protein profiling for diagnosis of pancreatic cancer reveals the presence of host response proteins. Clin Cancer Res 11(3):1110–1118 Koomen J, Shih L, Coombes K, Li D, Xiao L, Fidler I, Abbruzzese J, Kobayashi R (2005) Plasma protein profiling for diagnosis of pancreatic cancer reveals the presence of host response proteins. Clin Cancer Res 11(3):1110–1118
3.
Zurück zum Zitat Roy P, Truntzer C, Maucort-Boulch D, Jouve T, Molinari N (2011) Protein mass spectra data analysis for clinical biomarker discovery: a global review. Brief Bioinform 12(2):176–186CrossRef Roy P, Truntzer C, Maucort-Boulch D, Jouve T, Molinari N (2011) Protein mass spectra data analysis for clinical biomarker discovery: a global review. Brief Bioinform 12(2):176–186CrossRef
4.
Zurück zum Zitat Yang C, He Z, Yu W (2009) Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis. BMC Bioinformatics 10(1):4CrossRef Yang C, He Z, Yu W (2009) Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis. BMC Bioinformatics 10(1):4CrossRef
5.
Zurück zum Zitat Liu Q, Sung A, Qiao M, Chen Z, Yang J, Yang M, Huang X, Deng Y (2009) Comparison of feature selection and classification for MALDI-MS data. BMC Genomics 10(suppl 1):S3CrossRef Liu Q, Sung A, Qiao M, Chen Z, Yang J, Yang M, Huang X, Deng Y (2009) Comparison of feature selection and classification for MALDI-MS data. BMC Genomics 10(suppl 1):S3CrossRef
6.
Zurück zum Zitat Chen S, Li M, Hong D, Billheimer D, Li H, Xu B, Shyr Y (2009) A novel comprehensive wave-form MS data processing method. Bioinformatics 25(6):808–814CrossRef Chen S, Li M, Hong D, Billheimer D, Li H, Xu B, Shyr Y (2009) A novel comprehensive wave-form MS data processing method. Bioinformatics 25(6):808–814CrossRef
7.
Zurück zum Zitat Wang P, Yang P, Arthur J, Yang JYH (2010) A dynamic wavelet-based algorithm for preprocessing tandem mass spectrometry data. Bioinformatics 26(18):2242–2249CrossRef Wang P, Yang P, Arthur J, Yang JYH (2010) A dynamic wavelet-based algorithm for preprocessing tandem mass spectrometry data. Bioinformatics 26(18):2242–2249CrossRef
8.
Zurück zum Zitat Katajamaa M, Miettinen J, Oresic M (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22(5):634–636CrossRef Katajamaa M, Miettinen J, Oresic M (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22(5):634–636CrossRef
9.
Zurück zum Zitat Yu W, Wu B, Lin N, Stone K, Williams K, Zhao H (2006) Detecting and aligning peaks in mass spectrometry data with applications to MALDI. Comput Biol Chem 30(1):27–38CrossRef Yu W, Wu B, Lin N, Stone K, Williams K, Zhao H (2006) Detecting and aligning peaks in mass spectrometry data with applications to MALDI. Comput Biol Chem 30(1):27–38CrossRef
10.
Zurück zum Zitat Mantini D, Petrucci F, Pieragostino D, DelBoccio P, Nicola MD, Ilio CD, Federici G, Sacchetta P, Comani S, Urbani A (2007) LIMPIC: a computational method for the separation of protein MALDI-TOF-MS signals from noise. BMC Bioinformatics 8:101CrossRef Mantini D, Petrucci F, Pieragostino D, DelBoccio P, Nicola MD, Ilio CD, Federici G, Sacchetta P, Comani S, Urbani A (2007) LIMPIC: a computational method for the separation of protein MALDI-TOF-MS signals from noise. BMC Bioinformatics 8:101CrossRef
11.
Zurück zum Zitat Du P, Kibbe W, Lin S (2006) Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching. Bioinformatics 22(17):2059–2065CrossRef Du P, Kibbe W, Lin S (2006) Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching. Bioinformatics 22(17):2059–2065CrossRef
12.
Zurück zum Zitat Wee A, Grayden D, Zhu Y, Petkovic-Duran K, Smith D (2008) A continuous wavelet transform algorithm for peak detection. Electrophoresis 29(20):4215–4225CrossRef Wee A, Grayden D, Zhu Y, Petkovic-Duran K, Smith D (2008) A continuous wavelet transform algorithm for peak detection. Electrophoresis 29(20):4215–4225CrossRef
13.
Zurück zum Zitat Coombes K, Tsavachidis S, Morris J, Baggerly K, Hung M, Kuerer H (2005) Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform. Proteomics 5(16):4107–4117CrossRef Coombes K, Tsavachidis S, Morris J, Baggerly K, Hung M, Kuerer H (2005) Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform. Proteomics 5(16):4107–4117CrossRef
14.
Zurück zum Zitat Kwon D, Vannucci M, Song J, Jeong J, Pfeiffer R (2008) A novel wavelet-based thresholding method for the pre-processing of mass spectrometry data that accounts for heterogeneous noise. Proteomics 8(15):3019–3029CrossRef Kwon D, Vannucci M, Song J, Jeong J, Pfeiffer R (2008) A novel wavelet-based thresholding method for the pre-processing of mass spectrometry data that accounts for heterogeneous noise. Proteomics 8(15):3019–3029CrossRef
15.
Zurück zum Zitat Alexandrov T, Decker J, Mertens B, Deelder A, Tollenaar R, Maass P, Thiele H (2009) Biomarker discovery in MALDI-TOF serum protein profiles using discrete wavelet transformation. Bioinformatics 25(5):643–649CrossRef Alexandrov T, Decker J, Mertens B, Deelder A, Tollenaar R, Maass P, Thiele H (2009) Biomarker discovery in MALDI-TOF serum protein profiles using discrete wavelet transformation. Bioinformatics 25(5):643–649CrossRef
16.
Zurück zum Zitat Mostacci E, Truntzer C, Cardot H, Ducoroy P (2010) Multivariate denoising methods combining wavelets and principal component analysis for mass spectrometry data. Proteomics 10(14):2564–2572CrossRef Mostacci E, Truntzer C, Cardot H, Ducoroy P (2010) Multivariate denoising methods combining wavelets and principal component analysis for mass spectrometry data. Proteomics 10(14):2564–2572CrossRef
17.
Zurück zum Zitat Noy K, Fasulo D (2007) Improved model-based, platform-independent feature extraction for mass spectrometry. Bioinformatics 23(19):2528–2535CrossRef Noy K, Fasulo D (2007) Improved model-based, platform-independent feature extraction for mass spectrometry. Bioinformatics 23(19):2528–2535CrossRef
18.
Zurück zum Zitat Samuelsson J, Dalevi D, Levander F, Rognvaldsson T (2004) Modular, scriptable, and automated analysis tools for high-throughput peptide mass fingerprinting. Bioinformatics 20(18):3628–3635CrossRef Samuelsson J, Dalevi D, Levander F, Rognvaldsson T (2004) Modular, scriptable, and automated analysis tools for high-throughput peptide mass fingerprinting. Bioinformatics 20(18):3628–3635CrossRef
19.
Zurück zum Zitat Renard B, Kirchner M, Steen H, Steen J, Hamprecht F (2008) NITPICK: peak identification for mass spectrometry data. BMC Bioinformatics 9:355CrossRef Renard B, Kirchner M, Steen H, Steen J, Hamprecht F (2008) NITPICK: peak identification for mass spectrometry data. BMC Bioinformatics 9:355CrossRef
20.
Zurück zum Zitat Wang Y, Zhou X, Wang H, Li K, Yao L, Wong S (2008) Reversible jump MCMC approach for peak identification for stroke SELDI mass spectrometry using mixture model. Bioinformatics 24(13):i407–i413CrossRef Wang Y, Zhou X, Wang H, Li K, Yao L, Wong S (2008) Reversible jump MCMC approach for peak identification for stroke SELDI mass spectrometry using mixture model. Bioinformatics 24(13):i407–i413CrossRef
21.
Zurück zum Zitat Mantini D, Petrucci F, Boccio P, Pieragostino D, Nicola M, Lugaresi A, Federici G, Sacchetta P, Ilio C, Urbani A (2008) Independent component analysis for the extraction of reliable protein signal profiles from MALDI-TOF mass spectra. Bioinformatics 24(1):63–70CrossRef Mantini D, Petrucci F, Boccio P, Pieragostino D, Nicola M, Lugaresi A, Federici G, Sacchetta P, Ilio C, Urbani A (2008) Independent component analysis for the extraction of reliable protein signal profiles from MALDI-TOF mass spectra. Bioinformatics 24(1):63–70CrossRef
22.
Zurück zum Zitat McLerran D, Feng Z, Semmes O, Cazares L, Randolph T (2008) Signal detection in high-resolution mass spectrometry data. J Proteome Res 7(1):276–285CrossRef McLerran D, Feng Z, Semmes O, Cazares L, Randolph T (2008) Signal detection in high-resolution mass spectrometry data. J Proteome Res 7(1):276–285CrossRef
23.
Zurück zum Zitat Zhang S, DeGraba T, Wang H, Hoehn G, Gonzales D, Suffredini A, Ching W, Ng M, Zhou X, Wong S (2009) A novel peak detection approach with chemical noise removal using short-time FFT for prOTOF MS data. Proteomics 9(15):3833–3842CrossRef Zhang S, DeGraba T, Wang H, Hoehn G, Gonzales D, Suffredini A, Ching W, Ng M, Zhou X, Wong S (2009) A novel peak detection approach with chemical noise removal using short-time FFT for prOTOF MS data. Proteomics 9(15):3833–3842CrossRef
24.
Zurück zum Zitat Vandenbogaert V (2008) Alignment of LC-MS images, with applications to biomarker discovery and protein identification. Proteomics 8(4):650–672CrossRef Vandenbogaert V (2008) Alignment of LC-MS images, with applications to biomarker discovery and protein identification. Proteomics 8(4):650–672CrossRef
25.
Zurück zum Zitat Kong X, Reilly C (2009) A Bayesian approach to the alignment of mass spectra. Bioinformatics 25(24):3213–3220CrossRef Kong X, Reilly C (2009) A Bayesian approach to the alignment of mass spectra. Bioinformatics 25(24):3213–3220CrossRef
26.
Zurück zum Zitat Yu W, He Z, Liu J, Zhao H (2008) Improving mass spectrometry peak detection using multiple peak alignment results. J Proteome Res 7(1):123–129CrossRef Yu W, He Z, Liu J, Zhao H (2008) Improving mass spectrometry peak detection using multiple peak alignment results. J Proteome Res 7(1):123–129CrossRef
27.
Zurück zum Zitat Tibshirani R, Hastie T, Narasimhan B, Soltys S, Shi G, Koong A, Le Q (2004) Sample classification from protein mass spectrometry by ‘peak probability contrasts’. Bioinformatics 20(17):3034–3044CrossRef Tibshirani R, Hastie T, Narasimhan B, Soltys S, Shi G, Koong A, Le Q (2004) Sample classification from protein mass spectrometry by ‘peak probability contrasts’. Bioinformatics 20(17):3034–3044CrossRef
28.
Zurück zum Zitat Yu W, Li X, Liu J, Wu B, Williams KR, Zhao H (2006) Multiple peak alignment in sequential data analysis: a scale-space-based approach. IEEE/ACM Trans Comput Biol Bioinform 3(3):208–219CrossRef Yu W, Li X, Liu J, Wu B, Williams KR, Zhao H (2006) Multiple peak alignment in sequential data analysis: a scale-space-based approach. IEEE/ACM Trans Comput Biol Bioinform 3(3):208–219CrossRef
29.
Zurück zum Zitat Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182 Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182
30.
Zurück zum Zitat Ressom H, Varghese R, Abdel-Hamid M, Eissa S, Saha D, Goldman L, Petricoin E, Conrads T, Veenstra T, Loffredo C et al (2005) Analysis of mass spectral serum profiles for biomarker selection. Bioinformatics 21(21):4039–4045CrossRef Ressom H, Varghese R, Abdel-Hamid M, Eissa S, Saha D, Goldman L, Petricoin E, Conrads T, Veenstra T, Loffredo C et al (2005) Analysis of mass spectral serum profiles for biomarker selection. Bioinformatics 21(21):4039–4045CrossRef
31.
Zurück zum Zitat Ressom H, Varghese R, Drake S, Hortin G, Abdel-Hamid M, Loffredo C, Goldman R (2007) Peak selection from MALDI-TOF mass spectra using ant colony optimization. Bioinformatics 23(5):619–626CrossRef Ressom H, Varghese R, Drake S, Hortin G, Abdel-Hamid M, Loffredo C, Goldman R (2007) Peak selection from MALDI-TOF mass spectra using ant colony optimization. Bioinformatics 23(5):619–626CrossRef
32.
Zurück zum Zitat Park Y, Downing SR, Kim D, Hahn WC, Li C, Kantoff PW, Wei L (2007) Simultaneous and exact interval estimates for the contrast of two groups based on an extremely high dimensional variable: application to mass spec data. Bioinformatics 23(12):1451–1458CrossRef Park Y, Downing SR, Kim D, Hahn WC, Li C, Kantoff PW, Wei L (2007) Simultaneous and exact interval estimates for the contrast of two groups based on an extremely high dimensional variable: application to mass spec data. Bioinformatics 23(12):1451–1458CrossRef
33.
Zurück zum Zitat Oh J, Kim Y, Gurnani P, Rosenblatt K, Gao J (2008) Biomarker selection and sample pre diction for multi-category disease on MALDI-TOF data. Bioinformatics 24(16):1812–1818CrossRef Oh J, Kim Y, Gurnani P, Rosenblatt K, Gao J (2008) Biomarker selection and sample pre diction for multi-category disease on MALDI-TOF data. Bioinformatics 24(16):1812–1818CrossRef
34.
Zurück zum Zitat Oh J, Gurnani P, Schorge J, Rosenblatt K, Gao J (2009) An extended Markov blanket approach to proteomic biomarker detection from high-resolution mass spectrometry data. IEEE Trans Inf Technol Biomed 13(2):195–206CrossRef Oh J, Gurnani P, Schorge J, Rosenblatt K, Gao J (2009) An extended Markov blanket approach to proteomic biomarker detection from high-resolution mass spectrometry data. IEEE Trans Inf Technol Biomed 13(2):195–206CrossRef
35.
Zurück zum Zitat Hilario M, Kalousis A (2008) Approaches to dimensionality reduction in proteomic biomarker studies. Brief Bioinform 9(2):102–118CrossRef Hilario M, Kalousis A (2008) Approaches to dimensionality reduction in proteomic biomarker studies. Brief Bioinform 9(2):102–118CrossRef
36.
Zurück zum Zitat Abeel T, Helleputte T, Van de Peer Y, Dupont P, Saeys Y (2010) Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26(3):392–398CrossRef Abeel T, Helleputte T, Van de Peer Y, Dupont P, Saeys Y (2010) Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26(3):392–398CrossRef
37.
Zurück zum Zitat He Z, Yu W (2010) Stable feature selection for biomarker discovery. Comput Biol Chem 34(4):215–225CrossRef He Z, Yu W (2010) Stable feature selection for biomarker discovery. Comput Biol Chem 34(4):215–225CrossRef
38.
Zurück zum Zitat Good P (2005) Permutation, parametric and bootstrap tests of hypotheses. Springer, Heidelberg Good P (2005) Permutation, parametric and bootstrap tests of hypotheses. Springer, Heidelberg
39.
Zurück zum Zitat Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57(1):289–300 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57(1):289–300
40.
Zurück zum Zitat Benjamini Y (2010) Discovering the false discovery rate. J R Stat Soc Ser B Stat Methodol 72(4):405–416CrossRef Benjamini Y (2010) Discovering the false discovery rate. J R Stat Soc Ser B Stat Methodol 72(4):405–416CrossRef
41.
Zurück zum Zitat Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten I (2009) The WEKA data mining software: an update. SIGKDD Explor 11(1):10–18CrossRef Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten I (2009) The WEKA data mining software: an update. SIGKDD Explor 11(1):10–18CrossRef
42.
Zurück zum Zitat Smit S, Hoefsloot H, Smilde A (2008) Statistical data processing in clinical proteomics. J Chromatogr B 866(1–2):77–88CrossRef Smit S, Hoefsloot H, Smilde A (2008) Statistical data processing in clinical proteomics. J Chromatogr B 866(1–2):77–88CrossRef
43.
Zurück zum Zitat Wuhrer M (2007) Glycosylation profiling in clinical proteomics-heading for glycan biomarkers. Expert Rev Proteomics 4(2):135–136CrossRef Wuhrer M (2007) Glycosylation profiling in clinical proteomics-heading for glycan biomarkers. Expert Rev Proteomics 4(2):135–136CrossRef
44.
Zurück zum Zitat Barkauskas D, An H, Kronewitter S, De Leoz M, Chew H, de Vere White R, Leiserowitz G, Miyamoto S, Lebrilla C, Rocke D (2009) Detecting glycan cancer biomarkers in serum samples using MALDI FT-ICR mass spectrometry data. Bioinformatics 25(2):251–257CrossRef Barkauskas D, An H, Kronewitter S, De Leoz M, Chew H, de Vere White R, Leiserowitz G, Miyamoto S, Lebrilla C, Rocke D (2009) Detecting glycan cancer biomarkers in serum samples using MALDI FT-ICR mass spectrometry data. Bioinformatics 25(2):251–257CrossRef
45.
Zurück zum Zitat Ressom HW, Varghese RS, Goldman L, An Y, Loffredo CA, Abdel-Hamid M, Kyselova Z, Mechref Y, Novotny M, Drake SK, Goldman R (2008) Analysis of MALDI-TOF mass spectrometry data for discovery of peptide and glycan biomarkers of hepatocellular carcinoma. J Proteome Res 7(2):603–610CrossRef Ressom HW, Varghese RS, Goldman L, An Y, Loffredo CA, Abdel-Hamid M, Kyselova Z, Mechref Y, Novotny M, Drake SK, Goldman R (2008) Analysis of MALDI-TOF mass spectrometry data for discovery of peptide and glycan biomarkers of hepatocellular carcinoma. J Proteome Res 7(2):603–610CrossRef
46.
Zurück zum Zitat Aamodt A, Plaza E (1994) Case-based reasoning: foundational issues, methodological variations, and system approaches. Artif Intell Commun 7(1):39–59 Aamodt A, Plaza E (1994) Case-based reasoning: foundational issues, methodological variations, and system approaches. Artif Intell Commun 7(1):39–59
Metadaten
Titel
Bioinformatic Analysis of Data Generated from MALDI Mass Spectrometry for Biomarker Discovery
verfasst von
Zengyou He
Robert Z. Qi
Weichuan Yu
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/128_2012_365