Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2013

01.08.2013

Biological modeling of complex chemotaxis behaviors for C. elegans under speed regulation—a dynamic neural networks approach

verfasst von: Jian-Xin Xu, Xin Deng

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the modeling of several complex chemotaxis behaviors of C. elegans is explored, which include food attraction, toxin avoidance, and locomotion speed regulation. We first model the chemotaxis behaviors of food attraction and toxin avoidance separately. Then, an integrated chemotaxis behavioral model is proposed, which performs the two chemotaxis behaviors simultaneously. The novelty and the uniqueness of the proposed chemotaxis behavioral models are characterized by several attributes. First, all the chemotaxis behavioral model sare on biological basis, namely, the proposed chemotaxis behavior models are constructed by extracting the neural wire diagram from sensory neurons to motor neurons, where sensory neurons are specific for chemotaxis behaviors. Second, the chemotaxis behavioral models are able to perform turning and speed regulation. Third, chemotaxis behaviors are characterized by a set of switching logic functions that decide the orientation and speed. All models are implemented using dynamic neural networks (DNN) and trained using the real time recurrent learning (RTRL) algorithm. By incorporating a speed regulation mechanism, C. elegans can stop spontaneously when approaching food source or leaving away from toxin. The testing results and the comparison with experiment results verify that the proposed chemotaxis behavioral models can well mimic the chemotaxis behaviors of C. elegans in different environments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bargmann, C.I., & Horvitz, H.R. (1991). Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron, 7(5), 729–742.PubMedCrossRef Bargmann, C.I., & Horvitz, H.R. (1991). Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron, 7(5), 729–742.PubMedCrossRef
Zurück zum Zitat Berri, S., Boyle, J.H., Tassieri, M., Hope, I.A., Cohen, N. (2009). Forward locomotion of the nematode C. elegans is achieved through modulation of a single gait. HFSP Journal, 3(3), 186–193.PubMedCrossRef Berri, S., Boyle, J.H., Tassieri, M., Hope, I.A., Cohen, N. (2009). Forward locomotion of the nematode C. elegans is achieved through modulation of a single gait. HFSP Journal, 3(3), 186–193.PubMedCrossRef
Zurück zum Zitat Boyle, J.H. (2009). C. elegans locomotion: An integrated approach. Ph.D. Thesis. University of Leeds. Boyle, J.H. (2009). C. elegans locomotion: An integrated approach. Ph.D. Thesis. University of Leeds.
Zurück zum Zitat Boyle, J.H., & Cohen, N. (2008). Caenorhabditis elegans body wall muscles are simple actuators. Biosystems, 94, 170–181.PubMedCrossRef Boyle, J.H., & Cohen, N. (2008). Caenorhabditis elegans body wall muscles are simple actuators. Biosystems, 94, 170–181.PubMedCrossRef
Zurück zum Zitat Boyle, J.H., John, A.B., Cohen, N. (2008). An integrated neuromechanical model of C. elegans forward locomotion. LNCS, 4984, 37–47. Boyle, J.H., John, A.B., Cohen, N. (2008). An integrated neuromechanical model of C. elegans forward locomotion. LNCS, 4984, 37–47.
Zurück zum Zitat Culotti, J.G., & Russell, R.L. (1978). Osmotic avoidance defective mutants of the nematode Caenorhabditis elegans. Genetics, 90(2), 243–256.PubMed Culotti, J.G., & Russell, R.L. (1978). Osmotic avoidance defective mutants of the nematode Caenorhabditis elegans. Genetics, 90(2), 243–256.PubMed
Zurück zum Zitat Dunn, N.A. (2006). A novel neural network analysis method applied to biological neural networks. Ph.D. Thesis, University of Oregon, America. Dunn, N.A. (2006). A novel neural network analysis method applied to biological neural networks. Ph.D. Thesis, University of Oregon, America.
Zurück zum Zitat Dunn, N.A., & Lockery, S.R. (2004). A neural network model of chemotaxis predicts functions of synaptic connections in the nematode Caenorhabditis elegans. Journal of Computational Neuroscience, 17(2), 137–147.PubMedCrossRef Dunn, N.A., & Lockery, S.R. (2004). A neural network model of chemotaxis predicts functions of synaptic connections in the nematode Caenorhabditis elegans. Journal of Computational Neuroscience, 17(2), 137–147.PubMedCrossRef
Zurück zum Zitat Dunn, N.A., Pierce-Shimomura, J.T., Conery, J.S., Lockery, S.R. (2006). Clustered neural dynamics identify motifs for chemotaxis in Caenorhabditis elegans. In International joint conference on neural network (IJCNN 2006) (pp. 547–554). Dunn, N.A., Pierce-Shimomura, J.T., Conery, J.S., Lockery, S.R. (2006). Clustered neural dynamics identify motifs for chemotaxis in Caenorhabditis elegans. In International joint conference on neural network (IJCNN 2006) (pp. 547–554).
Zurück zum Zitat Ferrée, T.C., & Lockery, S.R. (1998). Chemotaxis control by linear recurrent networks. In Proc. of the sixth annual conference on computational neuroscience: Trends in research (pp. 373–377). Ferrée, T.C., & Lockery, S.R. (1998). Chemotaxis control by linear recurrent networks. In Proc. of the sixth annual conference on computational neuroscience: Trends in research (pp. 373–377).
Zurück zum Zitat Ferrée, T.C., & Lockery, S.R. (1999). Computational rules for chemotaxis in the nematode C. elegans. Journal of Computational Neuroscience, 6(3), 263–277.PubMedCrossRef Ferrée, T.C., & Lockery, S.R. (1999). Computational rules for chemotaxis in the nematode C. elegans. Journal of Computational Neuroscience, 6(3), 263–277.PubMedCrossRef
Zurück zum Zitat Ferrée, T.C., Marcotte, B.A., Lockery, S.R. (1996). Neural networkmodels of chemotaxis in the nematode Caenorhabditis elegans. Advances in Neural Information Processing Systems, 9, 55–61. Ferrée, T.C., Marcotte, B.A., Lockery, S.R. (1996). Neural networkmodels of chemotaxis in the nematode Caenorhabditis elegans. Advances in Neural Information Processing Systems, 9, 55–61.
Zurück zum Zitat Gray, J.M., Hill, J.J., Bargmann, C.I. (2005). A circuit for navigation in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 102(9), 3184–3191.PubMedCrossRef Gray, J.M., Hill, J.J., Bargmann, C.I. (2005). A circuit for navigation in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 102(9), 3184–3191.PubMedCrossRef
Zurück zum Zitat Hamm, L., Wade Brorsen, B., Hagan, M.T. (2002). Global optimization of neural network weights. In Proc. of the 2002 international joint conference on neural networks (IJCNN) (Vol. 2002, pp. 1228–1233). Hamm, L., Wade Brorsen, B., Hagan, M.T. (2002). Global optimization of neural network weights. In Proc. of the 2002 international joint conference on neural networks (IJCNN) (Vol. 2002, pp. 1228–1233).
Zurück zum Zitat Iino, Y., & Yoshida, K. (2009). Parallel use of two behavioral mechanisms for chemotaxis in Caenorhabditis elegans. Journal of Neuroscience, 29(17), 5370–5380.PubMedCrossRef Iino, Y., & Yoshida, K. (2009). Parallel use of two behavioral mechanisms for chemotaxis in Caenorhabditis elegans. Journal of Neuroscience, 29(17), 5370–5380.PubMedCrossRef
Zurück zum Zitat Izquierdo, E.J., & Lockery, S.R. (2010). Evolution and analysis of minimal neural circuits for klinotaxis in Caenorhabditis elegans. Journal of Neuroscience, 30(39), 12908–12917.PubMedCrossRef Izquierdo, E.J., & Lockery, S.R. (2010). Evolution and analysis of minimal neural circuits for klinotaxis in Caenorhabditis elegans. Journal of Neuroscience, 30(39), 12908–12917.PubMedCrossRef
Zurück zum Zitat Jim, K., Giles, C.L., Horne, B.G. (1996). An analysis of noise in recurrent neural networks: convergence and generalization. IEEE Transactions on Neural Networks, 7(6), 1424–1438.PubMedCrossRef Jim, K., Giles, C.L., Horne, B.G. (1996). An analysis of noise in recurrent neural networks: convergence and generalization. IEEE Transactions on Neural Networks, 7(6), 1424–1438.PubMedCrossRef
Zurück zum Zitat Karbowski, J., Schindelman, G., et al. (2008). Systems level circuit model of C. elegans undulatory locomotion: mathematical modeling and molecular genetics. Journal of Computational Neuroscience, 24(3), 253–276.PubMedCrossRef Karbowski, J., Schindelman, G., et al. (2008). Systems level circuit model of C. elegans undulatory locomotion: mathematical modeling and molecular genetics. Journal of Computational Neuroscience, 24(3), 253–276.PubMedCrossRef
Zurück zum Zitat Kawano, T., Po, M.D., Gao, S., Leung, G., Ryu, W.S., Zhen, M. (2011). An imbalancing act: Gap junctions reduce the backward motor circuit activity to bias C. elegans for forward locomotion. Neuron, 72(4), 572–586.PubMedCrossRef Kawano, T., Po, M.D., Gao, S., Leung, G., Ryu, W.S., Zhen, M. (2011). An imbalancing act: Gap junctions reduce the backward motor circuit activity to bias C. elegans for forward locomotion. Neuron, 72(4), 572–586.PubMedCrossRef
Zurück zum Zitat Lari-Najafi, H., Nasiruddin, M., Samad, T. (1989). Effect of initial weights on back-propagation and its variations. In IEEE international conference on systems, man and cybernetics (pp. 218–219). Lari-Najafi, H., Nasiruddin, M., Samad, T. (1989). Effect of initial weights on back-propagation and its variations. In IEEE international conference on systems, man and cybernetics (pp. 218–219).
Zurück zum Zitat Lee, Y., Oh, S.H., Kim, M.W. (1991). The effect of initial weights on premature saturation in back-propagation learning. In Proc. of the international joint conference on neural networks (pp. 765–770). Lee, Y., Oh, S.H., Kim, M.W. (1991). The effect of initial weights on premature saturation in back-propagation learning. In Proc. of the international joint conference on neural networks (pp. 765–770).
Zurück zum Zitat Leung, M.C.K., Williams, P.L., et al. (2008). Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicological Sciences, 106(1), 5–28.PubMedCrossRef Leung, M.C.K., Williams, P.L., et al. (2008). Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicological Sciences, 106(1), 5–28.PubMedCrossRef
Zurück zum Zitat Lockery, S.R. (2011). The computational worm: spatial orientation and its neuronal basis in C. elegans. Current Opinion in Neurobiology, 21(5), 728–790.CrossRef Lockery, S.R. (2011). The computational worm: spatial orientation and its neuronal basis in C. elegans. Current Opinion in Neurobiology, 21(5), 728–790.CrossRef
Zurück zum Zitat Maass, W. (1997). Networks of spiking neurons: the third generation of neural network models. Neural Networks, 10(9), 1659–1671.CrossRef Maass, W. (1997). Networks of spiking neurons: the third generation of neural network models. Neural Networks, 10(9), 1659–1671.CrossRef
Zurück zum Zitat Pierce-Shimomura, J.T., Morse, T.M., Lockery, S.R. (1999). The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis. Journal of Neuroscience, 19(21), 9557–9569.PubMed Pierce-Shimomura, J.T., Morse, T.M., Lockery, S.R. (1999). The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis. Journal of Neuroscience, 19(21), 9557–9569.PubMed
Zurück zum Zitat Pierce-Shimomura, J.T., Dores, M., Lockery, S.R. (2005). Analysis of the effects of turning bias on chemotaxis in C. elegans. Journal of Experimental Biology, 208(24), 4727–4733.PubMedCrossRef Pierce-Shimomura, J.T., Dores, M., Lockery, S.R. (2005). Analysis of the effects of turning bias on chemotaxis in C. elegans. Journal of Experimental Biology, 208(24), 4727–4733.PubMedCrossRef
Zurück zum Zitat Piggott, B.J., Liu, J., Feng, Z., Wescott, S.A., Shawn, Xu, X.Z. (2011). The neural circuits and synaptic mechanisms underlying motor initiation in C. elegans. Cell, 147(4), 922–933.PubMedCrossRef Piggott, B.J., Liu, J., Feng, Z., Wescott, S.A., Shawn, Xu, X.Z. (2011). The neural circuits and synaptic mechanisms underlying motor initiation in C. elegans. Cell, 147(4), 922–933.PubMedCrossRef
Zurück zum Zitat Rankin, C.H. (2005). Nematode memory: Now, where was I? Current Biology, 15(10), 374–375.CrossRef Rankin, C.H. (2005). Nematode memory: Now, where was I? Current Biology, 15(10), 374–375.CrossRef
Zurück zum Zitat Riddle, D.L., Blumenthal, T., Meyer, B.J., Priess, J.R. (1997). C. elegans II. New York: Cold Spring Harbor Laboratory Press. Riddle, D.L., Blumenthal, T., Meyer, B.J., Priess, J.R. (1997). C. elegans II. New York: Cold Spring Harbor Laboratory Press.
Zurück zum Zitat Saseetharran, M. (1996). Experiments that reveal the limitations of the small initial weights and the importance of the modified neural model. In Proc. of international conference on neural networks (ICNN) (Vol. 1996, pp. 442–447). Saseetharran, M. (1996). Experiments that reveal the limitations of the small initial weights and the importance of the modified neural model. In Proc. of international conference on neural networks (ICNN) (Vol. 1996, pp. 442–447).
Zurück zum Zitat Steel, R.G.D., & Torrie, J.H. (1960). Principles and procedures of statistics (pp. 187–287). New York: McGraw-Hill. Steel, R.G.D., & Torrie, J.H. (1960). Principles and procedures of statistics (pp. 187–287). New York: McGraw-Hill.
Zurück zum Zitat Stephens, G.J., Johnson-Kerner, B., Bialek, W., Ryu, W.S. (2010). From modes to movement in the behavior of Caenorhabditis elegans. PLoS ONE, 5(11), e13914.PubMedCrossRef Stephens, G.J., Johnson-Kerner, B., Bialek, W., Ryu, W.S. (2010). From modes to movement in the behavior of Caenorhabditis elegans. PLoS ONE, 5(11), e13914.PubMedCrossRef
Zurück zum Zitat Suzuki, M., Tsuji, T., Ohtake, H. (2005a). A neuromuscular model of C. elegans with directional control. In Proc. of the first international conference on complex medical engineering (pp. 167–172). Suzuki, M., Tsuji, T., Ohtake, H. (2005a). A neuromuscular model of C. elegans with directional control. In Proc. of the first international conference on complex medical engineering (pp. 167–172).
Zurück zum Zitat Suzuki, M., Tsuji, T., Ohtake, H. (2005b). A dynamic body model of the nematode C. elegans with a touch-response circuit. In IEEEinternational conference on robotics and biomimetics (ROBIO 2005) (Vol. 2005, pp. 538–543). Suzuki, M., Tsuji, T., Ohtake, H. (2005b). A dynamic body model of the nematode C. elegans with a touch-response circuit. In IEEEinternational conference on robotics and biomimetics (ROBIO 2005) (Vol. 2005, pp. 538–543).
Zurück zum Zitat Suzuki, M., Tsuji, T., Ohtake, H. (2005c). A model of motor control of the nematode C. elegans with neuronal circuits. Artificial Intelligence in Medicine, 35, 75–86.PubMedCrossRef Suzuki, M., Tsuji, T., Ohtake, H. (2005c). A model of motor control of the nematode C. elegans with neuronal circuits. Artificial Intelligence in Medicine, 35, 75–86.PubMedCrossRef
Zurück zum Zitat Suzuki, M., Goto, T., Tsuji, T., Ohtake, H. (2004). A motor control model of the nematode C. elegans. In IEEE international conference on robotics and biomimetics (ROBIO 2004) (pp. 879–884). Suzuki, M., Goto, T., Tsuji, T., Ohtake, H. (2004). A motor control model of the nematode C. elegans. In IEEE international conference on robotics and biomimetics (ROBIO 2004) (pp. 879–884).
Zurück zum Zitat Suzuki, H., Thiele, T.R., Faumont, S., Ezcurra, M., Lockery, S.R., Schafer, W.R. (2008). Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis. Nature, 454, 114–117.PubMedCrossRef Suzuki, H., Thiele, T.R., Faumont, S., Ezcurra, M., Lockery, S.R., Schafer, W.R. (2008). Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis. Nature, 454, 114–117.PubMedCrossRef
Zurück zum Zitat White, J.G., Southgate, E., Thomson, J.N., Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions. Royal Society of London, 314, 1–340.CrossRef White, J.G., Southgate, E., Thomson, J.N., Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions. Royal Society of London, 314, 1–340.CrossRef
Zurück zum Zitat Williams, R.J., & Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks. Neural Computation, 1, 270–280.CrossRef Williams, R.J., & Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks. Neural Computation, 1, 270–280.CrossRef
Zurück zum Zitat Wu, Y., & Zhang, L. (2002). The effect of initial weight, learning rate and regularization on generalization performance and efficiency. In Proc. of international conference on signal processing (ICSP) (Vol. 2002, pp. 1191–1194). Wu, Y., & Zhang, L. (2002). The effect of initial weight, learning rate and regularization on generalization performance and efficiency. In Proc. of international conference on signal processing (ICSP) (Vol. 2002, pp. 1191–1194).
Zurück zum Zitat Xu, J.X., Deng, X. (2010). Study on chemotaxis behaviors of C. elegans using dynamic neural network models: from artificial to biological model. Journal of Biological Systems, 18, 3–33.CrossRef Xu, J.X., Deng, X. (2010). Study on chemotaxis behaviors of C. elegans using dynamic neural network models: from artificial to biological model. Journal of Biological Systems, 18, 3–33.CrossRef
Zurück zum Zitat Ye, H.Y., Ye, B.P., Wang, D.Y. (2008). Molecular control of memory in nematode Caenorhabditis elegans. Neuroscience Bulletin, 24(1), 49–55.PubMedCrossRef Ye, H.Y., Ye, B.P., Wang, D.Y. (2008). Molecular control of memory in nematode Caenorhabditis elegans. Neuroscience Bulletin, 24(1), 49–55.PubMedCrossRef
Metadaten
Titel
Biological modeling of complex chemotaxis behaviors for C. elegans under speed regulation—a dynamic neural networks approach
verfasst von
Jian-Xin Xu
Xin Deng
Publikationsdatum
01.08.2013
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2013
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-012-0437-1

Weitere Artikel der Ausgabe 1/2013

Journal of Computational Neuroscience 1/2013 Zur Ausgabe