Skip to main content

2008 | OriginalPaper | Buchkapitel

7. Biological Soft Tissues

verfasst von : Jay D. Humphrey, Prof.

Erschienen in: Springer Handbook of Experimental Solid Mechanics

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A better understanding of many issues of human health, disease, injury, and the treatment thereof necessitates a detailed quantification of how biological cells, tissues, and organs respond to applied loads. Thus, experimental mechanics can, and must, play a fundamental role in cell biology, physiology, pathophysiology, and clinical intervention. The goal of this chapter is to discuss some of the foundations of experimental biomechanics, with particular attention to quantifying the finite-strain behavior of biological soft tissues in terms of nonlinear constitutive relations. Towards this end, we review illustrative elastic, viscoelastic, and poroelastic descriptors of soft-tissue behavior and the experiments on which they are based. In addition, we review a new class of much needed constitutive relations that will help quantify the growth and remodeling processes within tissues that are fundamental to long-term adaptations and responses to disease, injury, and clinical intervention. We will see that much has been learned, yet much remains to be discovered about the wonderfully complex biomechanical behavior of soft tissues.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
7.1.
Zurück zum Zitat J.F. Bell: Experimental foundations of solid mechanics,. In: Mechanics of Solids, Vol. I, ed. by C. Truesdell (Springer, New York 1973) J.F. Bell: Experimental foundations of solid mechanics,. In: Mechanics of Solids, Vol. I, ed. by C. Truesdell (Springer, New York 1973)
7.2.
Zurück zum Zitat C. Truesdell, W. Noll: The nonlinear field theories of mechanics. In: Handbuch der Physik, ed. by S. Flügge (Springer, Berlin, Heidelberg 1965) C. Truesdell, W. Noll: The nonlinear field theories of mechanics. In: Handbuch der Physik, ed. by S. Flügge (Springer, Berlin, Heidelberg 1965)
7.3.
Zurück zum Zitat R.P. Vito: The mechanical properties of soft tissues: I. A mechanical system for biaxial testing, J. Biomech. 13, 947–950 (1980)CrossRef R.P. Vito: The mechanical properties of soft tissues: I. A mechanical system for biaxial testing, J. Biomech. 13, 947–950 (1980)CrossRef
7.4.
Zurück zum Zitat J.C. Nash: Compact Numerical Methods for Computers (Wiley, New York 1979) J.C. Nash: Compact Numerical Methods for Computers (Wiley, New York 1979)
7.5.
Zurück zum Zitat J.T. Oden: Finite Elements of Nonlinear Continua (McGraw-Hill, New York 1972)MATH J.T. Oden: Finite Elements of Nonlinear Continua (McGraw-Hill, New York 1972)MATH
7.6.
Zurück zum Zitat K.T. Kavanaugh, R.W. Clough: Finite element application in the characterization of elastic solids, Int. J. Solid Struct. 7, 11–23 (1971)CrossRef K.T. Kavanaugh, R.W. Clough: Finite element application in the characterization of elastic solids, Int. J. Solid Struct. 7, 11–23 (1971)CrossRef
7.7.
Zurück zum Zitat B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter: Molecular Biology of the Cell (Garland, New York 2002) B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter: Molecular Biology of the Cell (Garland, New York 2002)
7.8.
Zurück zum Zitat D.Y.M. Leung, S. Glagov, M.B. Matthews: Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro, Science 191, 475–477 (1976)CrossRef D.Y.M. Leung, S. Glagov, M.B. Matthews: Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro, Science 191, 475–477 (1976)CrossRef
7.9.
Zurück zum Zitat S. Glagov, C.-H. Tsʼao: Restitution of aortic wall after sustained necrotizing transmural ligation injury, Am. J. Pathol. 79, 7–23 (1975) S. Glagov, C.-H. Tsʼao: Restitution of aortic wall after sustained necrotizing transmural ligation injury, Am. J. Pathol. 79, 7–23 (1975)
7.10.
Zurück zum Zitat L.E. Rosen, T.H. Hollis, M.G. Sharma: Alterations in bovine endothelial histidine decarboxylase activity following exposure to shearing stresses, Exp. Mol. Pathol. 20, 329–343 (1974)CrossRef L.E. Rosen, T.H. Hollis, M.G. Sharma: Alterations in bovine endothelial histidine decarboxylase activity following exposure to shearing stresses, Exp. Mol. Pathol. 20, 329–343 (1974)CrossRef
7.11.
Zurück zum Zitat R.S. Rivlin, D.W. Saunders: Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber, Philos. Trans. R. Soc. London A 243, 251–288 (1951)CrossRef R.S. Rivlin, D.W. Saunders: Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber, Philos. Trans. R. Soc. London A 243, 251–288 (1951)CrossRef
7.12.
7.13.
Zurück zum Zitat M.F. Beatty: Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues with examples, Appl. Mech. Rev. 40, 1699–1734 (1987)CrossRef M.F. Beatty: Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues with examples, Appl. Mech. Rev. 40, 1699–1734 (1987)CrossRef
7.14.
Zurück zum Zitat L.R.G. Treloar: The Physics of Rubber Elasticity, 3rd edn. (Oxford Univ Press, Oxford 1975) L.R.G. Treloar: The Physics of Rubber Elasticity, 3rd edn. (Oxford Univ Press, Oxford 1975)
7.15.
Zurück zum Zitat A.E. Green, J.E. Adkins: Large Elastic Deformations (Oxford Univ. Press, Oxford 1970)MATH A.E. Green, J.E. Adkins: Large Elastic Deformations (Oxford Univ. Press, Oxford 1970)MATH
7.16.
Zurück zum Zitat R.W. Ogden: Non-Linear Elastic Deformations (Wiley, New York 1984) R.W. Ogden: Non-Linear Elastic Deformations (Wiley, New York 1984)
7.17.
Zurück zum Zitat H.W. Haslach, J.D. Humphrey: Dynamics of biological soft tissue or rubber: Internally pressurized spherical membranes surrounded by a fluid, Int. J. Nonlinear Mech. 39, 399–420 (2004)CrossRefMATHMathSciNet H.W. Haslach, J.D. Humphrey: Dynamics of biological soft tissue or rubber: Internally pressurized spherical membranes surrounded by a fluid, Int. J. Nonlinear Mech. 39, 399–420 (2004)CrossRefMATHMathSciNet
7.18.
Zurück zum Zitat G.A. Holzapfel, T.C. Gasser, R.W. Ogden: A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elast. 61, 1–48 (2000)CrossRefMATHMathSciNet G.A. Holzapfel, T.C. Gasser, R.W. Ogden: A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elast. 61, 1–48 (2000)CrossRefMATHMathSciNet
7.19.
Zurück zum Zitat J.D. Humphrey: Cardiovascular Solid Mechanics (Springer, New York 2002) J.D. Humphrey: Cardiovascular Solid Mechanics (Springer, New York 2002)
7.20.
Zurück zum Zitat J.R. Walton, J.P. Wilber: Sufficient conditions for strong ellipticity for a class of anisotropic materials, Int. J. Nonlinear Mech. 38, 441–455 (2003)CrossRefMATHMathSciNet J.R. Walton, J.P. Wilber: Sufficient conditions for strong ellipticity for a class of anisotropic materials, Int. J. Nonlinear Mech. 38, 441–455 (2003)CrossRefMATHMathSciNet
7.21.
Zurück zum Zitat A.J.M. Spencer: Deformations of Fibre-Reinforced Materials (Clarendon, Oxford 1972)MATH A.J.M. Spencer: Deformations of Fibre-Reinforced Materials (Clarendon, Oxford 1972)MATH
7.22.
Zurück zum Zitat J.D. Humphrey, R.K. Strumpf, F.C.P. Yin: Determination of a constitutive relation for passive myocardium: I. A new functional form, ASME J. Biomech. Eng. 112, 333–339 (1990)CrossRef J.D. Humphrey, R.K. Strumpf, F.C.P. Yin: Determination of a constitutive relation for passive myocardium: I. A new functional form, ASME J. Biomech. Eng. 112, 333–339 (1990)CrossRef
7.23.
Zurück zum Zitat M.S. Sacks, C.J. Chuong: Biaxial mechanical properties of passive right ventricular free wall myocardium, J. Biomech. Eng. 115, 202–205 (1993)CrossRef M.S. Sacks, C.J. Chuong: Biaxial mechanical properties of passive right ventricular free wall myocardium, J. Biomech. Eng. 115, 202–205 (1993)CrossRef
7.24.
Zurück zum Zitat J.C. Criscione, J.D. Humphrey, A.S. Douglas, W.C. Hunter: An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity, J. Mech. Phys. Solids 48, 2445–2465 (2000)CrossRefMATH J.C. Criscione, J.D. Humphrey, A.S. Douglas, W.C. Hunter: An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity, J. Mech. Phys. Solids 48, 2445–2465 (2000)CrossRefMATH
7.25.
Zurück zum Zitat J.C. Criscione, A.S. Douglas, W.C. Hunter: Physically based strain invariant set for materials exhibiting transversely isotropic behavior, J. Mech. Phys. Solids 49, 871–897 (2001)CrossRefMATH J.C. Criscione, A.S. Douglas, W.C. Hunter: Physically based strain invariant set for materials exhibiting transversely isotropic behavior, J. Mech. Phys. Solids 49, 871–897 (2001)CrossRefMATH
7.26.
Zurück zum Zitat Y. Lanir: Constitutive equations for fibrous connective tissues, J. Biomech. 16, 1–12 (1983)CrossRef Y. Lanir: Constitutive equations for fibrous connective tissues, J. Biomech. 16, 1–12 (1983)CrossRef
7.27.
Zurück zum Zitat J.E. Bischoff, E.M. Arruda, K. Grosh: A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissues, Biomech. Model. Mechanobiol. 3, 56–65 (2004)CrossRef J.E. Bischoff, E.M. Arruda, K. Grosh: A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissues, Biomech. Model. Mechanobiol. 3, 56–65 (2004)CrossRef
7.28.
Zurück zum Zitat W. Maurel, Y. Wu, N. Magnenat, D. Thalmann: Biomechanical Models for Soft Tissue Simulation (Springer, Berlin 1998) W. Maurel, Y. Wu, N. Magnenat, D. Thalmann: Biomechanical Models for Soft Tissue Simulation (Springer, Berlin 1998)
7.29.
Zurück zum Zitat G.A. Johnson, G.A. Livesay, S.L.Y. Woo, K.R. Rajagopal: A single integral finite strain viscoelastic model of ligaments and tendons, ASME J. Biomech. Eng. 118, 221–226 (1996)CrossRef G.A. Johnson, G.A. Livesay, S.L.Y. Woo, K.R. Rajagopal: A single integral finite strain viscoelastic model of ligaments and tendons, ASME J. Biomech. Eng. 118, 221–226 (1996)CrossRef
7.30.
Zurück zum Zitat S. Baek, P.B. Wells, K.R. Rajagopal, J.D. Humphrey: Heat-induced changes in the finite strain viscoelastic behavior of a collagenous tissue, J. Biomech. Eng. 127, 580–586 (2005)CrossRef S. Baek, P.B. Wells, K.R. Rajagopal, J.D. Humphrey: Heat-induced changes in the finite strain viscoelastic behavior of a collagenous tissue, J. Biomech. Eng. 127, 580–586 (2005)CrossRef
7.31.
Zurück zum Zitat M.F. Beatty, Z. Zhou: Universal motions for a class of viscoelastic materials of differential type, Continuum Mech. Thermodyn. 3, 169–191 (1991)CrossRefMATHMathSciNet M.F. Beatty, Z. Zhou: Universal motions for a class of viscoelastic materials of differential type, Continuum Mech. Thermodyn. 3, 169–191 (1991)CrossRefMATHMathSciNet
7.32.
Zurück zum Zitat G. David, J.D. Humphrey: Further evidence for the dynamic stability of intracranial saccular aneurysms, J. Biomech. 36, 1143–1150 (2003)CrossRef G. David, J.D. Humphrey: Further evidence for the dynamic stability of intracranial saccular aneurysms, J. Biomech. 36, 1143–1150 (2003)CrossRef
7.33.
Zurück zum Zitat P.P. Provenzano, R.S. Lakes, D.T. Corr, R. Vanderby Jr: Application of nonlinear viscoelastic models to describe ligament behavior, Biomech. Model. Mechanobiol. 1, 45–57 (2002)CrossRef P.P. Provenzano, R.S. Lakes, D.T. Corr, R. Vanderby Jr: Application of nonlinear viscoelastic models to describe ligament behavior, Biomech. Model. Mechanobiol. 1, 45–57 (2002)CrossRef
7.34.
Zurück zum Zitat H.W. Haslach: Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissues, Biomech. Model. Mechanobiol. 3, 172–189 (2005)CrossRef H.W. Haslach: Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissues, Biomech. Model. Mechanobiol. 3, 172–189 (2005)CrossRef
7.35.
Zurück zum Zitat V.C. Mow, S.C. Kuei, W.M. Lai, C.G. Armstrong: Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments, ASME J. Biomech. Eng. 102, 73–84 (1980)CrossRef V.C. Mow, S.C. Kuei, W.M. Lai, C.G. Armstrong: Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments, ASME J. Biomech. Eng. 102, 73–84 (1980)CrossRef
7.36.
Zurück zum Zitat W.M. Lai, V.C. Mow, W. Zhu: Constitutive modeling of articular cartilage and biomacromolecular solutions, J. Biomech. Eng. 115, 474–480 (1993)CrossRef W.M. Lai, V.C. Mow, W. Zhu: Constitutive modeling of articular cartilage and biomacromolecular solutions, J. Biomech. Eng. 115, 474–480 (1993)CrossRef
7.37.
Zurück zum Zitat V.C. Mow, G.A. Ateshian, R.L. Spilker: Biomechanics of diarthroidal joints: A review of twenty years of progress, J. Biomech. Eng. 115, 460–473 (1993)CrossRef V.C. Mow, G.A. Ateshian, R.L. Spilker: Biomechanics of diarthroidal joints: A review of twenty years of progress, J. Biomech. Eng. 115, 460–473 (1993)CrossRef
7.38.
Zurück zum Zitat J.M. Huyghe, G.B. Houben, M.R. Drost, C.C. van Donkelaar: An ionised/non-ionised dual porosity model of intervertebral disc tissue experimental quantification of parameters, Biomech. Model. Mechanobiol. 2, 3–20 (2003)CrossRef J.M. Huyghe, G.B. Houben, M.R. Drost, C.C. van Donkelaar: An ionised/non-ionised dual porosity model of intervertebral disc tissue experimental quantification of parameters, Biomech. Model. Mechanobiol. 2, 3–20 (2003)CrossRef
7.39.
Zurück zum Zitat R.L. Spilker, J.K. Suh, M.E. Vermilyea, T.A. Maxian: Alternate Hybrid, Mixed, and Penalty Finite Element Formulations for the Biphasic Model of Soft Hydrated Tissues,. In: Biomechanics of Diarthrodial Joints, ed. by V.C. Mow, A. Ratcliffe, S.L.Y. Woo (Springer, New York 1990) pp. 401–436 R.L. Spilker, J.K. Suh, M.E. Vermilyea, T.A. Maxian: Alternate Hybrid, Mixed, and Penalty Finite Element Formulations for the Biphasic Model of Soft Hydrated Tissues,. In: Biomechanics of Diarthrodial Joints, ed. by V.C. Mow, A. Ratcliffe, S.L.Y. Woo (Springer, New York 1990) pp. 401–436
7.40.
Zurück zum Zitat B.R. Simon, M.V. Kaufman, M.A. McAfee, A.L. Baldwin: Finite element models for arterial wall mechanics, J. Biomech. Eng. 115, 489–496 (1993)CrossRef B.R. Simon, M.V. Kaufman, M.A. McAfee, A.L. Baldwin: Finite element models for arterial wall mechanics, J. Biomech. Eng. 115, 489–496 (1993)CrossRef
7.41.
Zurück zum Zitat R.A. Reynolds, J.D. Humphrey: Steady diffusion within a finitely extended mixture slab, Math. Mech. Solids 3, 147–167 (1998)CrossRefMATHMathSciNet R.A. Reynolds, J.D. Humphrey: Steady diffusion within a finitely extended mixture slab, Math. Mech. Solids 3, 147–167 (1998)CrossRefMATHMathSciNet
7.42.
Zurück zum Zitat G.I. Zahalak, B. de Laborderie, J.M. Guccione: The effects of cross-fiber deformation on axial fiber stress in myocardium, J. Biomech. Eng. 121, 376–385 (1999)CrossRef G.I. Zahalak, B. de Laborderie, J.M. Guccione: The effects of cross-fiber deformation on axial fiber stress in myocardium, J. Biomech. Eng. 121, 376–385 (1999)CrossRef
7.43.
Zurück zum Zitat A. Rachev, K. Hayashi: Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries, Ann. Biomed. Eng. 27, 459–468 (1999)CrossRef A. Rachev, K. Hayashi: Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries, Ann. Biomed. Eng. 27, 459–468 (1999)CrossRef
7.44.
Zurück zum Zitat P.J. Hunter, A.D. McCulloch, H.E.D.J. ter Keurs: Modelling the mechanical properties of cardiac muscle, Prog. Biophys. Mol. Biol. 69, 289–331 (1998)CrossRef P.J. Hunter, A.D. McCulloch, H.E.D.J. ter Keurs: Modelling the mechanical properties of cardiac muscle, Prog. Biophys. Mol. Biol. 69, 289–331 (1998)CrossRef
7.45.
Zurück zum Zitat P.J. Hunter, P. Kohl, D. Noble: Integrative models of the heart: Achievements and limitations, Philos. Trans. R. Soc. London A359, 1049–1054 (2001)CrossRef P.J. Hunter, P. Kohl, D. Noble: Integrative models of the heart: Achievements and limitations, Philos. Trans. R. Soc. London A359, 1049–1054 (2001)CrossRef
7.46.
Zurück zum Zitat J.D. Humphrey: Continuum thermomechanics and the clinical treatment of disease and injury, Appl. Mech. Rev. 56, 231–260 (2003)CrossRef J.D. Humphrey: Continuum thermomechanics and the clinical treatment of disease and injury, Appl. Mech. Rev. 56, 231–260 (2003)CrossRef
7.47.
Zurück zum Zitat K.R. Diller, T.P. Ryan: Heat transfer in living systems: Current opportunities, J. Heat. Transf. 120, 810–829 (1998)CrossRef K.R. Diller, T.P. Ryan: Heat transfer in living systems: Current opportunities, J. Heat. Transf. 120, 810–829 (1998)CrossRef
7.48.
Zurück zum Zitat S.C. Cowin: Bone stress adaptation models, J. Biomech. Eng. 115, 528–533 (1993)CrossRef S.C. Cowin: Bone stress adaptation models, J. Biomech. Eng. 115, 528–533 (1993)CrossRef
7.49.
Zurück zum Zitat D.R. Carter, G.S. Beaupré: Skeletal Function and Form (Cambridge Univ. Press, Cambridge 2001) D.R. Carter, G.S. Beaupré: Skeletal Function and Form (Cambridge Univ. Press, Cambridge 2001)
7.50.
Zurück zum Zitat C.D. Murray: The physiological principle of minimum work: I. The vascular system and the cost of blood volume, Proc. Natl. Acad. Sci. 12, 207–214 (1926)CrossRef C.D. Murray: The physiological principle of minimum work: I. The vascular system and the cost of blood volume, Proc. Natl. Acad. Sci. 12, 207–214 (1926)CrossRef
7.51.
Zurück zum Zitat A.M. Turing: The chemical basis of morphogenesis, Proc. R. Soc. London B 237, 37–72 (1952) A.M. Turing: The chemical basis of morphogenesis, Proc. R. Soc. London B 237, 37–72 (1952)
7.52.
Zurück zum Zitat R.T. Tranquillo, J.D. Murray: Continuum model of fibroblast-driven wound contraction: Inflammation-mediation, J. Theor. Biol. 158, 135–172 (1992)CrossRef R.T. Tranquillo, J.D. Murray: Continuum model of fibroblast-driven wound contraction: Inflammation-mediation, J. Theor. Biol. 158, 135–172 (1992)CrossRef
7.53.
Zurück zum Zitat V.H. Barocas, R.T. Tranquillo: An anisotropic biphasic theory of tissue equivalent mechanics: The interplay among cell traction, fibrillar network, fibril alignment, and cell contact guidance, J. Biomech. Eng. 119, 137–145 (1997)CrossRef V.H. Barocas, R.T. Tranquillo: An anisotropic biphasic theory of tissue equivalent mechanics: The interplay among cell traction, fibrillar network, fibril alignment, and cell contact guidance, J. Biomech. Eng. 119, 137–145 (1997)CrossRef
7.54.
Zurück zum Zitat L. Olsen, P.K. Maini, J.A. Sherratt, J. Dallon: Mathematical modelling of anisotropy in fibrous connective tissue, Math. Biosci. 158, 145–170 (1999)CrossRefMATH L. Olsen, P.K. Maini, J.A. Sherratt, J. Dallon: Mathematical modelling of anisotropy in fibrous connective tissue, Math. Biosci. 158, 145–170 (1999)CrossRefMATH
7.55.
Zurück zum Zitat N. Bellomo, L. Preziosi: Modelling and mathematical problems related to tumor evolution and its interaction with the immune system, Math. Comput. Model. 32, 413–452 (2000)CrossRefMATHMathSciNet N. Bellomo, L. Preziosi: Modelling and mathematical problems related to tumor evolution and its interaction with the immune system, Math. Comput. Model. 32, 413–452 (2000)CrossRefMATHMathSciNet
7.56.
Zurück zum Zitat A.F. Jones, H.M. Byrne, J.S. Gibson, J.W. Dodd: A mathematical model of the stress induced during avascular tumour growth, J. Math. Biol. 40, 473–499 (2000)CrossRefMATHMathSciNet A.F. Jones, H.M. Byrne, J.S. Gibson, J.W. Dodd: A mathematical model of the stress induced during avascular tumour growth, J. Math. Biol. 40, 473–499 (2000)CrossRefMATHMathSciNet
7.57.
Zurück zum Zitat L.A. Taber: Biomechanics of growth, remodeling, and morphogenesis, Appl. Mech. Rev. 48, 487–545 (1995)CrossRef L.A. Taber: Biomechanics of growth, remodeling, and morphogenesis, Appl. Mech. Rev. 48, 487–545 (1995)CrossRef
7.58.
Zurück zum Zitat R. Skalak: Growth as a finite displacement field, Proc. IUTAM Symposium on Finite Elasticity, ed. by D.E. Carlson, R.T. Shield (Martinus Nijhoff, The Hague 1981) pp. 347–355 R. Skalak: Growth as a finite displacement field, Proc. IUTAM Symposium on Finite Elasticity, ed. by D.E. Carlson, R.T. Shield (Martinus Nijhoff, The Hague 1981) pp. 347–355
7.59.
Zurück zum Zitat A. Tozeren, R. Skalak: Interaction of stress and growth in a fibrous tissue, J. Theor. Biol. 130, 337–350 (1988)CrossRef A. Tozeren, R. Skalak: Interaction of stress and growth in a fibrous tissue, J. Theor. Biol. 130, 337–350 (1988)CrossRef
7.60.
Zurück zum Zitat E.K. Rodriguez, A. Hoger, A.D. McCulloch: Stress-dependent finite growth in soft elastic tissues, J. Biomech. 27, 455–467 (1994)CrossRef E.K. Rodriguez, A. Hoger, A.D. McCulloch: Stress-dependent finite growth in soft elastic tissues, J. Biomech. 27, 455–467 (1994)CrossRef
7.61.
Zurück zum Zitat V.A. Lubarda, A. Hoger: On the mechanics of solids with a growing mass, Int. J. Solid Struct. 39, 4627–4664 (2002)CrossRefMATH V.A. Lubarda, A. Hoger: On the mechanics of solids with a growing mass, Int. J. Solid Struct. 39, 4627–4664 (2002)CrossRefMATH
7.62.
Zurück zum Zitat L.A. Taber: A model for aortic growth based on fluid shear and fiber stresses, ASME J. Biomech. Eng. 120, 348–354 (1998)CrossRef L.A. Taber: A model for aortic growth based on fluid shear and fiber stresses, ASME J. Biomech. Eng. 120, 348–354 (1998)CrossRef
7.63.
Zurück zum Zitat A. Rachev, N. Stergiopulos, J.-J. Meister: A model for geometric and mechanical adaptation of arteries to sustained hypertension, ASME J. Biomech. Eng. 120, 9–17 (1998)CrossRef A. Rachev, N. Stergiopulos, J.-J. Meister: A model for geometric and mechanical adaptation of arteries to sustained hypertension, ASME J. Biomech. Eng. 120, 9–17 (1998)CrossRef
7.64.
Zurück zum Zitat S.M. Klisch, T.J. van Dyke, A. Hoger: A theory of volumetric growth for compressible elastic biological materials, Math. Mech. Solid 6, 551–575 (2001)CrossRefMATH S.M. Klisch, T.J. van Dyke, A. Hoger: A theory of volumetric growth for compressible elastic biological materials, Math. Mech. Solid 6, 551–575 (2001)CrossRefMATH
7.65.
Zurück zum Zitat J.D. Humphrey, K.R. Rajagopal: A constrained mixture model for growth and remodeling of soft tissues, Math. Model. Meth. Appl. Sci. 12, 407–430 (2002)CrossRefMATHMathSciNet J.D. Humphrey, K.R. Rajagopal: A constrained mixture model for growth and remodeling of soft tissues, Math. Model. Meth. Appl. Sci. 12, 407–430 (2002)CrossRefMATHMathSciNet
7.66.
Zurück zum Zitat S. Baek, K.R. Rajagopal, J.D. Humphrey: A theoretical model of enlarging intracranial fusiform aneurysms, J. Biomech. Eng. 128, 142–149 (2006)CrossRef S. Baek, K.R. Rajagopal, J.D. Humphrey: A theoretical model of enlarging intracranial fusiform aneurysms, J. Biomech. Eng. 128, 142–149 (2006)CrossRef
7.67.
Zurück zum Zitat R.A. Boerboom, N.J.B. Driessen, C.V.C. Bouten, J.M. Huyghe, F.P.T. Baaijens: Finite element model of mechanically induced collagen fiber synthesis and degradation in the aortic valve, Ann. Biomed. Eng. 31, 1040–1053 (2003)CrossRef R.A. Boerboom, N.J.B. Driessen, C.V.C. Bouten, J.M. Huyghe, F.P.T. Baaijens: Finite element model of mechanically induced collagen fiber synthesis and degradation in the aortic valve, Ann. Biomed. Eng. 31, 1040–1053 (2003)CrossRef
7.68.
Zurück zum Zitat A. Gamba, D. Ambrosi, A. Coniglio, A. de Candia, S. Di Talia, E. Giraudo, G. Serini, L. Preziosi, F. Bussolino: Percolation morphogenesis and Burgers dynamics in blood vessels formation, Phys. Rev. Lett. 90, 118101 (2003) A. Gamba, D. Ambrosi, A. Coniglio, A. de Candia, S. Di Talia, E. Giraudo, G. Serini, L. Preziosi, F. Bussolino: Percolation morphogenesis and Burgers dynamics in blood vessels formation, Phys. Rev. Lett. 90, 118101 (2003)
7.69.
7.70.
Zurück zum Zitat A. Menzel: Modeling of anisotropic growth in biological tissues: A new approach and computational aspects, Biomech. Model. Mechanobiol. 3, 147–171 (2005)CrossRef A. Menzel: Modeling of anisotropic growth in biological tissues: A new approach and computational aspects, Biomech. Model. Mechanobiol. 3, 147–171 (2005)CrossRef
7.71.
Zurück zum Zitat E. Kuhl, R. Haas, G. Himpel, A. Menzel: Computational modeling of arterial wall growth, Biomech. Model. Mechanobiol. 6, 321–332 (2007)CrossRef E. Kuhl, R. Haas, G. Himpel, A. Menzel: Computational modeling of arterial wall growth, Biomech. Model. Mechanobiol. 6, 321–332 (2007)CrossRef
Metadaten
Titel
Biological Soft Tissues
verfasst von
Jay D. Humphrey, Prof.
Copyright-Jahr
2008
Verlag
Springer US
DOI
https://doi.org/10.1007/978-0-387-30877-7_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.