Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 1/2014

01.01.2014 | Original Article

Biomechanics of thoracolumbar junction vertebral fractures from various kinematic conditions

verfasst von: Léo Fradet, Yvan Petit, Eric Wagnac, Carl-Eric Aubin, Pierre-Jean Arnoux

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thoracolumbar spine fracture classifications are mainly based on a post-traumatic observation of fracture patterns, which is not sufficient to provide a full understanding of spinal fracture mechanisms. This study aimed to biomechanically analyze known fracture patterns and to study how they relate to fracture mechanisms. The instigation of each fracture type was computationally simulated to assess the fracture process. A refined finite element model of three vertebrae and intervertebral connective tissues was subjected to 51 different dynamic loading conditions divided into four categories: compression, shear, distraction and torsion. Fracture initiation and propagation were analyzed, and time and energy at fracture initiation were computed. To each fracture pattern described in the clinical literature were associated one or several of the simulated fracture patterns and corresponding loading conditions. When compared to each other, torsion resulted in low-energy fractures, compression and shear resulted in medium energy fractures, and distraction resulted in high-energy fractures. Increased velocity resulted in higher-energy fracture for similar loadings. The use of a finite element model provided quantitative characterization of fracture patterns occurrence complementary to clinical and experimental studies, allowing to fully understand spinal fracture biomechanics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Buckley JM, Leang DC, Keaveny TM (2006) Sensitivity of vertebral compressive strength to endplate loading distribution. J Biomech Eng 128(5):641–646PubMedCrossRef Buckley JM, Leang DC, Keaveny TM (2006) Sensitivity of vertebral compressive strength to endplate loading distribution. J Biomech Eng 128(5):641–646PubMedCrossRef
2.
Zurück zum Zitat Denis F (1983) The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine (Phila Pa 1976) 8(8):817–831CrossRef Denis F (1983) The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine (Phila Pa 1976) 8(8):817–831CrossRef
3.
Zurück zum Zitat Duma SM et al (2006) Biomechanical response of the lumbar spine in dynamic compression. Biomed Sci Instrum 42:476–481PubMed Duma SM et al (2006) Biomechanical response of the lumbar spine in dynamic compression. Biomed Sci Instrum 42:476–481PubMed
4.
Zurück zum Zitat Eguizabal J et al (2010) Pure moment testing for spinal biomechanics applications: fixed versus sliding ring cable-driven test designs. J Biomech 43(7):1422–1425PubMedCrossRef Eguizabal J et al (2010) Pure moment testing for spinal biomechanics applications: fixed versus sliding ring cable-driven test designs. J Biomech 43(7):1422–1425PubMedCrossRef
5.
Zurück zum Zitat El-Rich M et al (2009) Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions. J Biomech 42(9):1252–1262PubMedCrossRef El-Rich M et al (2009) Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions. J Biomech 42(9):1252–1262PubMedCrossRef
6.
Zurück zum Zitat Garges KJ et al (2008) A comparison of the torsional stiffness of the lumbar spine in flexion and extension. J Manip Physiol Ther 31(8):563–569CrossRef Garges KJ et al (2008) A comparison of the torsional stiffness of the lumbar spine in flexion and extension. J Manip Physiol Ther 31(8):563–569CrossRef
7.
Zurück zum Zitat Garo A et al (2011) Calibration of the mechanical properties in a finite element model of a lumbar vertebra under dynamic compression up to failure. Med Biol Eng Comput 49(12):1371–1379 PubMedCrossRef Garo A et al (2011) Calibration of the mechanical properties in a finite element model of a lumbar vertebra under dynamic compression up to failure. Med Biol Eng Comput 49(12):1371–1379 PubMedCrossRef
8.
Zurück zum Zitat Holdsworth F (1970) Fractures, dislocations, and fracture-dislocations of the spine. J Bone Joint Surg Am 52(8):1534–1551PubMed Holdsworth F (1970) Fractures, dislocations, and fracture-dislocations of the spine. J Bone Joint Surg Am 52(8):1534–1551PubMed
9.
Zurück zum Zitat Kemper AR, McNally C, Duma SM (2007) The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs. Biomed Sci Instrum 43:176–181PubMed Kemper AR, McNally C, Duma SM (2007) The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs. Biomed Sci Instrum 43:176–181PubMed
10.
Zurück zum Zitat Kifune M et al (1997) Functional morphology of the spinal canal after endplate, wedge, and burst fractures. J Spinal Disord 10(6):457–466PubMedCrossRef Kifune M et al (1997) Functional morphology of the spinal canal after endplate, wedge, and burst fractures. J Spinal Disord 10(6):457–466PubMedCrossRef
11.
Zurück zum Zitat Lalonde NM et al (2010) Biomechanical modeling of the lateral decubitus posture during corrective scoliosis surgery. Clin Biomech (Bristol, Avon) 25(6):510–516CrossRef Lalonde NM et al (2010) Biomechanical modeling of the lateral decubitus posture during corrective scoliosis surgery. Clin Biomech (Bristol, Avon) 25(6):510–516CrossRef
12.
13.
Zurück zum Zitat Little JP, Adam CJ (2009) The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending. Spine (Phila Pa 1976) 34(2):E76–E82CrossRef Little JP, Adam CJ (2009) The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending. Spine (Phila Pa 1976) 34(2):E76–E82CrossRef
14.
Zurück zum Zitat Magerl F et al (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3(4):184–201PubMedCrossRef Magerl F et al (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3(4):184–201PubMedCrossRef
15.
Zurück zum Zitat Neumann P, Nordwall A, Osvalder AL (1995) Traumatic instability of the lumbar spine. A dynamic in vitro study of flexion-distraction injury. Spine (Phila Pa 1976) 20(10):1111–1121CrossRef Neumann P, Nordwall A, Osvalder AL (1995) Traumatic instability of the lumbar spine. A dynamic in vitro study of flexion-distraction injury. Spine (Phila Pa 1976) 20(10):1111–1121CrossRef
16.
Zurück zum Zitat Osvalder AL et al (1993) A method for studying the biomechanical load response of the (in vitro) lumbar spine under dynamic flexion-shear loads. J Biomech 26(10):1227–1236PubMedCrossRef Osvalder AL et al (1993) A method for studying the biomechanical load response of the (in vitro) lumbar spine under dynamic flexion-shear loads. J Biomech 26(10):1227–1236PubMedCrossRef
17.
Zurück zum Zitat Oxland T et al (2011) Biomechanical aspects of spinal cord injury. In: Bilston LE (ed) Neural tissue biomechanics. Springer, Berlin, pp 159–180 Oxland T et al (2011) Biomechanical aspects of spinal cord injury. In: Bilston LE (ed) Neural tissue biomechanics. Springer, Berlin, pp 159–180
18.
Zurück zum Zitat Panjabi MM (2007) Hybrid multidirectional test method to evaluate spinal adjacent-level effects. Clin Biomech (Bristol, Avon) 22(3):257–265CrossRef Panjabi MM (2007) Hybrid multidirectional test method to evaluate spinal adjacent-level effects. Clin Biomech (Bristol, Avon) 22(3):257–265CrossRef
19.
20.
Zurück zum Zitat Qiu TX et al (2006) Investigation of thoracolumbar T12-L1 burst fracture mechanism using finite element method. Med Eng Phys 28(7):656–664PubMedCrossRef Qiu TX et al (2006) Investigation of thoracolumbar T12-L1 burst fracture mechanism using finite element method. Med Eng Phys 28(7):656–664PubMedCrossRef
21.
Zurück zum Zitat Vaccaro AR et al (2005) A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine (Phila Pa 1976) 30(20):2325–2333CrossRef Vaccaro AR et al (2005) A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine (Phila Pa 1976) 30(20):2325–2333CrossRef
22.
Zurück zum Zitat Wagnac E et al (2012) Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions. Med Biol Eng Comput 50(9):903–915 Wagnac E et al (2012) Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions. Med Biol Eng Comput 50(9):903–915
23.
Zurück zum Zitat Wagnac E et al (2011) Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads. J Biomech Eng 133(10):101007PubMedCrossRef Wagnac E et al (2011) Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads. J Biomech Eng 133(10):101007PubMedCrossRef
24.
Zurück zum Zitat Whyne CM, Hu SS, Lotz JC (2003) Burst fracture in the metastatically involved spine: development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model. Spine (Phila Pa 1976) 28(7):652–660 Whyne CM, Hu SS, Lotz JC (2003) Burst fracture in the metastatically involved spine: development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model. Spine (Phila Pa 1976) 28(7):652–660
25.
Zurück zum Zitat Wilcox RK et al (2004) A dynamic investigation of the burst fracture process using a combined experimental and finite element approach. Eur Spine J 13(6):481–488PubMedCentralPubMedCrossRef Wilcox RK et al (2004) A dynamic investigation of the burst fracture process using a combined experimental and finite element approach. Eur Spine J 13(6):481–488PubMedCentralPubMedCrossRef
26.
Zurück zum Zitat Yogonandan N et al (1989) Stiffness and strain energy criteria to evaluate the threshold of injury to an intervertebral joint. J Biomech 22(2):135–142CrossRef Yogonandan N et al (1989) Stiffness and strain energy criteria to evaluate the threshold of injury to an intervertebral joint. J Biomech 22(2):135–142CrossRef
Metadaten
Titel
Biomechanics of thoracolumbar junction vertebral fractures from various kinematic conditions
verfasst von
Léo Fradet
Yvan Petit
Eric Wagnac
Carl-Eric Aubin
Pierre-Jean Arnoux
Publikationsdatum
01.01.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 1/2014
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-013-1124-8

Weitere Artikel der Ausgabe 1/2014

Medical & Biological Engineering & Computing 1/2014 Zur Ausgabe