Skip to main content

2016 | OriginalPaper | Buchkapitel

4. Biomedical Application of Natural Polymers

verfasst von : Ololade Olatunji

Erschienen in: Natural Polymers

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The main areas of biomedicine where biopolymers find applicability include tissue engineering, bone repair/replacement, dental repair/replacement, controlled drug delivery and skin repair.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abarrategi A et al (2008) Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 29:94–102 Abarrategi A et al (2008) Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 29:94–102
Zurück zum Zitat Ahmed AR, Fekry AM, Farghali RA (2013) A study of calcium carbonate/multiwalled-carbon nanotubes/chitosan composite coatings on Ti-6Al-4V alloy for orthopedic implants. Appl Surf Sci 285:309–316 Ahmed AR, Fekry AM, Farghali RA (2013) A study of calcium carbonate/multiwalled-carbon nanotubes/chitosan composite coatings on Ti-6Al-4V alloy for orthopedic implants. Appl Surf Sci 285:309–316
Zurück zum Zitat Antunes BP et al (2015) Chitosan/arginine-chitosan polymer blends for assembly of nanofibrous membranes for wound regeneration. Carbohydr Polym 130:104–112 Antunes BP et al (2015) Chitosan/arginine-chitosan polymer blends for assembly of nanofibrous membranes for wound regeneration. Carbohydr Polym 130:104–112
Zurück zum Zitat Ayutsede J et al (2006) Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process. Biomacromolecules 7:208–214 Ayutsede J et al (2006) Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process. Biomacromolecules 7:208–214
Zurück zum Zitat Boateng J et al (2015) Composite alginate and gelatin based biopolymeric wafers containing silver sulfadiazine for wound healing. Int J Biol Macromolecules 79:63–71 Boateng J et al (2015) Composite alginate and gelatin based biopolymeric wafers containing silver sulfadiazine for wound healing. Int J Biol Macromolecules 79:63–71
Zurück zum Zitat Braga MEM et al (2008) Supercritical Solvent impregnation of ophthalmic drugs on chitosan derivatives. J Supercrit Fluids 44:245–257 Braga MEM et al (2008) Supercritical Solvent impregnation of ophthalmic drugs on chitosan derivatives. J Supercrit Fluids 44:245–257
Zurück zum Zitat Brower V (2010) RNA interference advances to early-stage clinical trials. J Natl Cancer Inst 102:1459–1461 Brower V (2010) RNA interference advances to early-stage clinical trials. J Natl Cancer Inst 102:1459–1461
Zurück zum Zitat Burke JF, Yannas OV, Quinby WC Jr (1981) Successful use of physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 194(4):413–427 Burke JF, Yannas OV, Quinby WC Jr (1981) Successful use of physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 194(4):413–427
Zurück zum Zitat Cai ZX et al (2010) Fabrication of chitosan/silk fibroin composite for wound-dressing applications. Int J Mol Sci 11:3529–3539 Cai ZX et al (2010) Fabrication of chitosan/silk fibroin composite for wound-dressing applications. Int J Mol Sci 11:3529–3539
Zurück zum Zitat Catalina M et al (2013) From waste to healing biopolymers: biomedical applications of bio-collagen materials extracted from industrial leather residues in wound healing. Materials 6:1599–1607 Catalina M et al (2013) From waste to healing biopolymers: biomedical applications of bio-collagen materials extracted from industrial leather residues in wound healing. Materials 6:1599–1607
Zurück zum Zitat Champeau M et al (2015) Drug loading of polymer implants by supercritical CO2 assisted impregnation: a review. J Controlled Release 209:248–259 Champeau M et al (2015) Drug loading of polymer implants by supercritical CO2 assisted impregnation: a review. J Controlled Release 209:248–259
Zurück zum Zitat Cui L et al (2015) A novel nano/micro-fibrous scaffold by melt-spinning method for bone tissue engineering. J Bionic Eng 12(1):117–128 Cui L et al (2015) A novel nano/micro-fibrous scaffold by melt-spinning method for bone tissue engineering. J Bionic Eng 12(1):117–128
Zurück zum Zitat de Blacam C et al (2011) Evaluation of clinical outcomes and aesthetic results after autologous fat grafting for contour deformities of the reconstructed breast. Plast Reconstr Surg 28:411–418 de Blacam C et al (2011) Evaluation of clinical outcomes and aesthetic results after autologous fat grafting for contour deformities of the reconstructed breast. Plast Reconstr Surg 28:411–418
Zurück zum Zitat Deepthi S et al (2015) Chitosan-hyaluronic acid hydrogel coated poly(caprolactone) multiscale bilayer scaffold for ligament regeneration. Chem Eng J 260:478–485 Deepthi S et al (2015) Chitosan-hyaluronic acid hydrogel coated poly(caprolactone) multiscale bilayer scaffold for ligament regeneration. Chem Eng J 260:478–485
Zurück zum Zitat Dhandayuthapani B et al (2011) polymer scaffold in tissue engineering applications: a review. Int J Polym Sci 2011(290602):1–19 Dhandayuthapani B et al (2011) polymer scaffold in tissue engineering applications: a review. Int J Polym Sci 2011(290602):1–19
Zurück zum Zitat Dias AMA et al (2011) Development of natural based wound dressings impregnated with bioactive compounds and supercritical carbon dioxide. Int J Pharm 408:9–19 Dias AMA et al (2011) Development of natural based wound dressings impregnated with bioactive compounds and supercritical carbon dioxide. Int J Pharm 408:9–19
Zurück zum Zitat Dias AMA et al (2013) Wound dressings loaded with an anti-inflammatory juca (Libidibia ferrea) extract using supercritical carbon dioxide technology. J Supercrit Fluids 74:34–45 Dias AMA et al (2013) Wound dressings loaded with an anti-inflammatory juca (Libidibia ferrea) extract using supercritical carbon dioxide technology. J Supercrit Fluids 74:34–45
Zurück zum Zitat Dreifke MB, Jayasuriya AA, Jayasuriya AC (2015) Current wound healing procedures and potential care. Mater Sci Eng C 48:651–662 Dreifke MB, Jayasuriya AA, Jayasuriya AC (2015) Current wound healing procedures and potential care. Mater Sci Eng C 48:651–662
Zurück zum Zitat Duarte ARC, Mano JF, Reis RL (2009) Dexamethasone-loaded scaffolds prepared by supercritical-assisted phase inversion. Acta Biomater 5:2054–2062 Duarte ARC, Mano JF, Reis RL (2009) Dexamethasone-loaded scaffolds prepared by supercritical-assisted phase inversion. Acta Biomater 5:2054–2062
Zurück zum Zitat Fan Y, Saito T, Isogai A (2010) Individual chitin nano-whiskers prepared from partially deacetylated a-chitin by fibril surface cationization. Carbohydr Polym 79:1046–1051 Fan Y, Saito T, Isogai A (2010) Individual chitin nano-whiskers prepared from partially deacetylated a-chitin by fibril surface cationization. Carbohydr Polym 79:1046–1051
Zurück zum Zitat Fire A et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811 Fire A et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811
Zurück zum Zitat Freiberg S, Zhu XX (2005) Polymer microspheres for controlled drug release. Int J Pharm 282(1–2):1–18 Freiberg S, Zhu XX (2005) Polymer microspheres for controlled drug release. Int J Pharm 282(1–2):1–18
Zurück zum Zitat Gong S et al (2005) A novel porous natural polymer scaffold for tissue engineering. Eng Med Biol Soc 5:4884–4887 Gong S et al (2005) A novel porous natural polymer scaffold for tissue engineering. Eng Med Biol Soc 5:4884–4887
Zurück zum Zitat Gorczyca G et al (2014) Preparation and characterization of genipin cross-linked porous chitosan-collagen-gelatin scaffolds using chitosan-CO2 solution. Carbohydr Polym 102(15):901–911 Gorczyca G et al (2014) Preparation and characterization of genipin cross-linked porous chitosan-collagen-gelatin scaffolds using chitosan-CO2 solution. Carbohydr Polym 102(15):901–911
Zurück zum Zitat Green S et al (2009) Chitosan derivatives alter release profiles of model compounds from calcium phosphate implants. Carbohydr Res 344(7):901–907 Green S et al (2009) Chitosan derivatives alter release profiles of model compounds from calcium phosphate implants. Carbohydr Res 344(7):901–907
Zurück zum Zitat Guzman-Aranguez A, Colligris B, Pintor J (2013) Contact lenses: promising devices for ocular drug delivery. J Ocular Pharmacol Ther 29:189–199 Guzman-Aranguez A, Colligris B, Pintor J (2013) Contact lenses: promising devices for ocular drug delivery. J Ocular Pharmacol Ther 29:189–199
Zurück zum Zitat Hadba AR et al (2011) Isocyanate‐functional adhesives for biomedical applications. Biocompatibility and feasibility study for vascular closure applications. J Biomed Mater Res Bio Appl Biomater 99:27–35 Hadba AR et al (2011) Isocyanate‐functional adhesives for biomedical applications. Biocompatibility and feasibility study for vascular closure applications. J Biomed Mater Res Bio Appl Biomater 99:27–35
Zurück zum Zitat Hartmann H et al (2013) Hyaluronic acid/chitosan multilayer coatings on neuronal implants for localized delivery of siRNA nanoplexes. J Controlled Release 168(3):289–297 Hartmann H et al (2013) Hyaluronic acid/chitosan multilayer coatings on neuronal implants for localized delivery of siRNA nanoplexes. J Controlled Release 168(3):289–297
Zurück zum Zitat He C et al (2012) Rapid mineralization of porous gelatin scaffolds by electrodeposition for bone tissue engineering. J Mater Chem 22:2111–2119 He C et al (2012) Rapid mineralization of porous gelatin scaffolds by electrodeposition for bone tissue engineering. J Mater Chem 22:2111–2119
Zurück zum Zitat Hirata E et al (2011) Multiwalled carbon nanotube-coating of 3D collagen scaffolds for bone tissue engineering. Carbon 49:3284–3291 Hirata E et al (2011) Multiwalled carbon nanotube-coating of 3D collagen scaffolds for bone tissue engineering. Carbon 49:3284–3291
Zurück zum Zitat Hsu WC et al (2000) Inhibition of conjunctival scarring and contraction by a porous collagen-glycosaminoglycan implant. Invest Opthalmology Visual Sci 41:2404–2411 Hsu WC et al (2000) Inhibition of conjunctival scarring and contraction by a porous collagen-glycosaminoglycan implant. Invest Opthalmology Visual Sci 41:2404–2411
Zurück zum Zitat Hule AR, Pochan DJ (2007) Polymer nanocomposite in biomedical application. MRS Bull 32:354–358 Hule AR, Pochan DJ (2007) Polymer nanocomposite in biomedical application. MRS Bull 32:354–358
Zurück zum Zitat Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. J Biomater Sci 12(1):107–124 Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. J Biomater Sci 12(1):107–124
Zurück zum Zitat Iqbal J, Gunn J, Serruys PW (2013) Coronary stents: historical development, current status and future directions. Br Med Bull 106:193–211 Iqbal J, Gunn J, Serruys PW (2013) Coronary stents: historical development, current status and future directions. Br Med Bull 106:193–211
Zurück zum Zitat Ivanova EP, Bazaka K, Crawford RJ (2014) Natural polymer biomaterials: advanced applications. New Funct Biomater Med Healthc 32–70 Ivanova EP, Bazaka K, Crawford RJ (2014) Natural polymer biomaterials: advanced applications. New Funct Biomater Med Healthc 32–70
Zurück zum Zitat Izumi R, Komada S, Ochi K, Karasawa L, Osaki T, Murahata Y, Tsuka T, Imagawa T, Itoh N, Okamoto Y, Izawa H, Morimoto M, Saimoto H, Azuma K, Ifuku S (2015) Favorable effects of superficially deacetylated chitin nanofibrils on the wound healing process. Carbohydr Polym 123:461–467 Izumi R, Komada S, Ochi K, Karasawa L, Osaki T, Murahata Y, Tsuka T, Imagawa T, Itoh N, Okamoto Y, Izawa H, Morimoto M, Saimoto H, Azuma K, Ifuku S (2015) Favorable effects of superficially deacetylated chitin nanofibrils on the wound healing process. Carbohydr Polym 123:461–467
Zurück zum Zitat Kelechi TJ et al (2012) A randomized, investigator-blinded, controlled pilot study to evaluate the safety and efficacy of a poly-N-acetyl-glucosamine-derived membrane material in patients with venous leg ulcers. J Am Acad Dermatol 66:e209–e215 Kelechi TJ et al (2012) A randomized, investigator-blinded, controlled pilot study to evaluate the safety and efficacy of a poly-N-acetyl-glucosamine-derived membrane material in patients with venous leg ulcers. J Am Acad Dermatol 66:e209–e215
Zurück zum Zitat Kikic I, Vecchione F (2003) Supercritical impregnation of polymers. Curr Opin Solid State Mater Sci 7:399–405 Kikic I, Vecchione F (2003) Supercritical impregnation of polymers. Curr Opin Solid State Mater Sci 7:399–405
Zurück zum Zitat Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926 Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926
Zurück zum Zitat Lee YJ et al (2015) Enhanced biocompatibility and wound healing properties of biodegradable polymer-modified allyl 2-cyanoacrylate tissue adhesive. Mater Sci Eng C 51:43–50 Lee YJ et al (2015) Enhanced biocompatibility and wound healing properties of biodegradable polymer-modified allyl 2-cyanoacrylate tissue adhesive. Mater Sci Eng C 51:43–50
Zurück zum Zitat Li W et al (2014a) Ultrasonic elasticity determination of 45S5 Bioglass (R)—based scaffolds: influence of polymer coating and crosslinking treatment. J Mech Behav Biomed Mater Li W et al (2014a) Ultrasonic elasticity determination of 45S5 Bioglass (R)—based scaffolds: influence of polymer coating and crosslinking treatment. J Mech Behav Biomed Mater
Zurück zum Zitat Li X et al (2014b) 3D-printed biopolymers for tissue engineering applications. Int J Polym Sci 2014(8291545):1–13 Li X et al (2014b) 3D-printed biopolymers for tissue engineering applications. Int J Polym Sci 2014(8291545):1–13
Zurück zum Zitat Li XM, Huang Y, Zheng LS (2014c) Effect of substrate stiffness on the functions of rat bone marrow and adipose tissue derived mesenchymal stem cells in vitro. J Biomed Mater Res A 102A:1092–1101 Li XM, Huang Y, Zheng LS (2014c) Effect of substrate stiffness on the functions of rat bone marrow and adipose tissue derived mesenchymal stem cells in vitro. J Biomed Mater Res A 102A:1092–1101
Zurück zum Zitat Lima PAL, Resende CX, Almeida Soares GDA (2013) Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering. Mater Sci Eng C 33(6):3389–3395 Lima PAL, Resende CX, Almeida Soares GDA (2013) Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering. Mater Sci Eng C 33(6):3389–3395
Zurück zum Zitat Loxley A (2012) Devices and implant systems by hot-melt extrusion. Hot-Melt Extrusion: Pharm Appl Loxley A (2012) Devices and implant systems by hot-melt extrusion. Hot-Melt Extrusion: Pharm Appl
Zurück zum Zitat Ma PX, Zhang R (2001) Microtubular architecture of biodegradable polymer scaffolds. J Biomed Mater Res 56(4):469–477 Ma PX, Zhang R (2001) Microtubular architecture of biodegradable polymer scaffolds. J Biomed Mater Res 56(4):469–477
Zurück zum Zitat Ma SL et al (2010) Partitioning of drug model compounds between poly(lactic acid)s and supercritical CO2 using quartz crystal microbalance as an in situ detector. J Supercrit Fluids 54:129–136 Ma SL et al (2010) Partitioning of drug model compounds between poly(lactic acid)s and supercritical CO2 using quartz crystal microbalance as an in situ detector. J Supercrit Fluids 54:129–136
Zurück zum Zitat Mazaki T et al (2014) A novel visible light-induced, rapidly cross-linkable gelatin scaffold for osteochondral tissue engineering. Sci Reports 4(4457):1–10 Mazaki T et al (2014) A novel visible light-induced, rapidly cross-linkable gelatin scaffold for osteochondral tissue engineering. Sci Reports 4(4457):1–10
Zurück zum Zitat Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349 Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349
Zurück zum Zitat Minami S et al (2014) Effects of chitin and its derivatives on wound-healing acceleration mechanisms. J Chitin Chitosan Sci 2:163–178 Minami S et al (2014) Effects of chitin and its derivatives on wound-healing acceleration mechanisms. J Chitin Chitosan Sci 2:163–178
Zurück zum Zitat Mogosanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463(2):127–136 Mogosanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463(2):127–136
Zurück zum Zitat Mooney DJ et al (1994) Deign and fabrication of biodegradable polymer devices to engineer tubular tissues. Cell Transplant 3(2):203–210 Mooney DJ et al (1994) Deign and fabrication of biodegradable polymer devices to engineer tubular tissues. Cell Transplant 3(2):203–210
Zurück zum Zitat Mou Z et al (2013) Preparation of silk fibroin/collagen/hydroxyapatite composite scaffold by particulate leaching method. Maters Lett 105:189–191 Mou Z et al (2013) Preparation of silk fibroin/collagen/hydroxyapatite composite scaffold by particulate leaching method. Maters Lett 105:189–191
Zurück zum Zitat Muzzarelli RAA, Mehtedi ME, Mattioli-Belmonte M (2014) Emerging biomedical applications of nano-chitins and nano-chitosans obtained via eco-friendly technologies from marine resources. Marine Drugs 12:5468–5502 Muzzarelli RAA, Mehtedi ME, Mattioli-Belmonte M (2014) Emerging biomedical applications of nano-chitins and nano-chitosans obtained via eco-friendly technologies from marine resources. Marine Drugs 12:5468–5502
Zurück zum Zitat Nandagiri VK et al (2011) Incorporation of PLGA nanoparticles in porous chitosan-gelatin scaffolds: Influence on the physical properties and cell behaviour. J Mech Behav Biomed Mater 4(7):1318–1327 Nandagiri VK et al (2011) Incorporation of PLGA nanoparticles in porous chitosan-gelatin scaffolds: Influence on the physical properties and cell behaviour. J Mech Behav Biomed Mater 4(7):1318–1327
Zurück zum Zitat Nardecchia S et al (2012) Osteoconductive performance of carbon nanotube scaffolds homogeneously mineralized by flow-through electrodeposition. Adv Functional Mater 22:4411–4420 Nardecchia S et al (2012) Osteoconductive performance of carbon nanotube scaffolds homogeneously mineralized by flow-through electrodeposition. Adv Functional Mater 22:4411–4420
Zurück zum Zitat Nazeer RA, Sri Suganya U (2014) Porous scaffolds of gelatin from the marine gastropod Ficus variegate with commercial cross linkers for biomedical applications. Food Sci Biotechnol 23(2):327–335 Nazeer RA, Sri Suganya U (2014) Porous scaffolds of gelatin from the marine gastropod Ficus variegate with commercial cross linkers for biomedical applications. Food Sci Biotechnol 23(2):327–335
Zurück zum Zitat Ninan N et al (2013) Synthesis and characterisation of gelatin/zeolite porous scaffold. Eur Polym J 49(9):2433–2445 Ninan N et al (2013) Synthesis and characterisation of gelatin/zeolite porous scaffold. Eur Polym J 49(9):2433–2445
Zurück zum Zitat Olivas-Armendariz I et al (2010) Chitosan/MWCNT composites prepared by thermal induced phase separation. J Alloys Compounds 495:592–595 Olivas-Armendariz I et al (2010) Chitosan/MWCNT composites prepared by thermal induced phase separation. J Alloys Compounds 495:592–595
Zurück zum Zitat Ouriemchi EM, Vergnaud JM (2000) Process of drug transfer with three different polymeric systems with transdermal drug delivery. Comput Theor Polym Sci 10(5):391–401 Ouriemchi EM, Vergnaud JM (2000) Process of drug transfer with three different polymeric systems with transdermal drug delivery. Comput Theor Polym Sci 10(5):391–401
Zurück zum Zitat Pandey G, Thostenson ET (2012) Carbon nanotube-based multifunctional polymer nanocomposites. Polym Rev 52:355–416 Pandey G, Thostenson ET (2012) Carbon nanotube-based multifunctional polymer nanocomposites. Polym Rev 52:355–416
Zurück zum Zitat Pu J et al (2015) Electrospun bilayer fibrous scaffolds for enhances cell infiltration and vascularization in vivo. Acta Biomateriallia 13:131–141 Pu J et al (2015) Electrospun bilayer fibrous scaffolds for enhances cell infiltration and vascularization in vivo. Acta Biomateriallia 13:131–141
Zurück zum Zitat Rajangam T, An SS (2013) Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. Int J Nanomed 8:3641–3652 Rajangam T, An SS (2013) Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. Int J Nanomed 8:3641–3652
Zurück zum Zitat Rajzer I et al (2014) Electrospun gelatin/poly(e-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. Mater Sci Eng C 44:183–190 Rajzer I et al (2014) Electrospun gelatin/poly(e-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. Mater Sci Eng C 44:183–190
Zurück zum Zitat Ribeiro-Resende VT et al (2009) Strategies for inducing the formation of bands of Bungner in peripheral nerve regeneration. Biomater 30:5251–5259 Ribeiro-Resende VT et al (2009) Strategies for inducing the formation of bands of Bungner in peripheral nerve regeneration. Biomater 30:5251–5259
Zurück zum Zitat Roether JA et al (2002) Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and bioglass (R) for tissue engineering application. Biomaterials 23(18):3871–3878 Roether JA et al (2002) Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and bioglass (R) for tissue engineering application. Biomaterials 23(18):3871–3878
Zurück zum Zitat Sahoo NG et al (2010) Polymer nanocomposites based on functional carbon nanotubes Progress Polym Sci 35:837–867 Sahoo NG et al (2010) Polymer nanocomposites based on functional carbon nanotubes Progress Polym Sci 35:837–867
Zurück zum Zitat Sano H et al (2014) Acellular adipose matrix as a natural scaffold for tissue engineering. J Plast Reconstr Aesthetic Surg 67(1):99–106 Sano H et al (2014) Acellular adipose matrix as a natural scaffold for tissue engineering. J Plast Reconstr Aesthetic Surg 67(1):99–106
Zurück zum Zitat Serrano MC, Gutierrez MC, del Monte F (2014) Role of polymers in the design of 3D carbon nanotube-based scaffolds for biomedical applications. Progress Polym Sci 39(7):1448–1471 Serrano MC, Gutierrez MC, del Monte F (2014) Role of polymers in the design of 3D carbon nanotube-based scaffolds for biomedical applications. Progress Polym Sci 39(7):1448–1471
Zurück zum Zitat Shin SR et al (2012) Carbon nanotube reinforced hybrid microgels as scaffolds materials for cell encapsulation. ACS Nano 6:362–372 Shin SR et al (2012) Carbon nanotube reinforced hybrid microgels as scaffolds materials for cell encapsulation. ACS Nano 6:362–372
Zurück zum Zitat Siepmann J, Siegel RA, Rathbone MJ (2012) Fundamentals and applications of controlled release drug delivery. Springer, Berlin Siepmann J, Siegel RA, Rathbone MJ (2012) Fundamentals and applications of controlled release drug delivery. Springer, Berlin
Zurück zum Zitat Singth TRR et al (2009) Physicochemical characterization of polyethylene glycol plasticized poly methyl vinyl ether-co-maleic acid films. J Appl Polym Sci 112:2792–2799 Singth TRR et al (2009) Physicochemical characterization of polyethylene glycol plasticized poly methyl vinyl ether-co-maleic acid films. J Appl Polym Sci 112:2792–2799
Zurück zum Zitat Song K et al (2015) Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame. Mater Sci Eng C Song K et al (2015) Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame. Mater Sci Eng C
Zurück zum Zitat Sundaram J, Durance TD, Wang R (2008) Porous scaffold of gelatin-starch with nanohydroxyapatite composite processed via novel microwave vacuum drying. Acta Biomaterialia 4(4):932–942 Sundaram J, Durance TD, Wang R (2008) Porous scaffold of gelatin-starch with nanohydroxyapatite composite processed via novel microwave vacuum drying. Acta Biomaterialia 4(4):932–942
Zurück zum Zitat Swain SK, Sarkar D (2013) Preparation of nanohydroxyapatite gelatin porous scaffold and mechanical properties at cryogenic environment. Mater Lett 92(1):252–254 Swain SK, Sarkar D (2013) Preparation of nanohydroxyapatite gelatin porous scaffold and mechanical properties at cryogenic environment. Mater Lett 92(1):252–254
Zurück zum Zitat Thirupathi KR et al (2013) Biochem Biophys Acta 1830:4030–4039 Thirupathi KR et al (2013) Biochem Biophys Acta 1830:4030–4039
Zurück zum Zitat Venkatraman S, Boey F, Lao LL (2008) Implanted cardiovascular polymers: natural, synthetic and bio-inspired. Progress Polym Sci 33(9):853–874 Venkatraman S, Boey F, Lao LL (2008) Implanted cardiovascular polymers: natural, synthetic and bio-inspired. Progress Polym Sci 33(9):853–874
Zurück zum Zitat Vlierberghe SV et al (2014) Porous hydrogel biomedical foam scaffolds for tissue repair. Biomed Foams Tissue Eng Appl 335–390 Vlierberghe SV et al (2014) Porous hydrogel biomedical foam scaffolds for tissue repair. Biomed Foams Tissue Eng Appl 335–390
Zurück zum Zitat Wei G, Ma PX (2004) Structure and properties of nano hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25(19):4749–4757 Wei G, Ma PX (2004) Structure and properties of nano hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25(19):4749–4757
Zurück zum Zitat Wu X et al (2010) Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomaterialia 6(3):1167–1177 Wu X et al (2010) Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomaterialia 6(3):1167–1177
Zurück zum Zitat Wu S et al (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng: R: Reports 80:1–36 Wu S et al (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng: R: Reports 80:1–36
Zurück zum Zitat Yang C et al (2013) Vancomycin-chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release. Mater Sci Eng 33(1):2203–2212 Yang C et al (2013) Vancomycin-chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release. Mater Sci Eng 33(1):2203–2212
Zurück zum Zitat Yannas IV, Burke JF (1980) Design of an artificial skin. I. Basic design principles. J Biomed Mater Res 14(1):65–81 Yannas IV, Burke JF (1980) Design of an artificial skin. I. Basic design principles. J Biomed Mater Res 14(1):65–81
Zurück zum Zitat Yannas IV et al (1975) Suppression of in vivo degradability and of immunogenicity of collagen by reaction with glycosaminoglycans. Polym Preprints 16:209–214 Yannas IV et al (1975) Suppression of in vivo degradability and of immunogenicity of collagen by reaction with glycosaminoglycans. Polym Preprints 16:209–214
Zurück zum Zitat Yannas IV et al (1977) Multilayer membrane useful as synthetic skin. US patent 4060081 Yannas IV et al (1977) Multilayer membrane useful as synthetic skin. US patent 4060081
Zurück zum Zitat Yannas IV, Burke JF, Warpehoski M (1981) Prompt long term functional replacement of skin. Trans Am Soc Artif Intern Organs 27:19–23 Yannas IV, Burke JF, Warpehoski M (1981) Prompt long term functional replacement of skin. Trans Am Soc Artif Intern Organs 27:19–23
Zurück zum Zitat Yannas IV et al (1982) Regeneration of skin following closure of deep wounds with a biodegradable template. Trans Soc Biomater 5:24–29 Yannas IV et al (1982) Regeneration of skin following closure of deep wounds with a biodegradable template. Trans Soc Biomater 5:24–29
Zurück zum Zitat Yannas IV et al (1985) Polymeric template facilities regeneration of sciatic nerves across 15-mm gap. Trans Soc Biomater 8:146 Yannas IV et al (1985) Polymeric template facilities regeneration of sciatic nerves across 15-mm gap. Trans Soc Biomater 8:146
Zurück zum Zitat Yildirim ED et al (2008) Fabrication characterization and Biocompatibility of single-walled carbon nanotube-reinforced alginate composite scaffolds manufactured using freeform fabrication technique. J Biomed Mater Res B 87:406–414 Yildirim ED et al (2008) Fabrication characterization and Biocompatibility of single-walled carbon nanotube-reinforced alginate composite scaffolds manufactured using freeform fabrication technique. J Biomed Mater Res B 87:406–414
Zurück zum Zitat Zhang F et al (2011) Fabrication of gelatin-hyaluronic acid hybrid scaffolds with tunable porous structures for soft tissue engineering. Int J Biol Macromol 48(3):474– 481 Zhang F et al (2011) Fabrication of gelatin-hyaluronic acid hybrid scaffolds with tunable porous structures for soft tissue engineering. Int J Biol Macromol 48(3):474– 481
Zurück zum Zitat Zhang H et al (2015) Silk fibroin/sodium alginate composite nano-fibrous scaffold prepared through thermally induced phase separation (TIPS) method for biomedical applications. Mater Sci Eng C 55:8–13 Zhang H et al (2015) Silk fibroin/sodium alginate composite nano-fibrous scaffold prepared through thermally induced phase separation (TIPS) method for biomedical applications. Mater Sci Eng C 55:8–13
Zurück zum Zitat Zurite R, Puiggali J, Rodriguez-Galan A (2006) Loading and release of ibuprofen in multi- and monofilament surgical sutures. Macromol Biosci 6:767–775 Zurite R, Puiggali J, Rodriguez-Galan A (2006) Loading and release of ibuprofen in multi- and monofilament surgical sutures. Macromol Biosci 6:767–775
Metadaten
Titel
Biomedical Application of Natural Polymers
verfasst von
Ololade Olatunji
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-26414-1_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.