Skip to main content
Erschienen in: International Journal of Machine Learning and Cybernetics 4/2011

01.12.2011 | Original Article

Biomedical named entity recognition using generalized expectation criteria

verfasst von: Lin Yao, Chengjie Sun, Yan Wu, Xiaolong Wang, Xuan Wang

Erschienen in: International Journal of Machine Learning and Cybernetics | Ausgabe 4/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is difficult to apply machine learning to a domain which is short of labeled training data, such as biomedical named entity recognition (NER) which remains a challenging task because of its extraordinary complex nomenclature. In this paper, we proposed a semi-supervised method which can train condition random field (CRF) models using generalized expectation (GE) criteria to solve biomedical named entity recognition problem. In the proposed method, instead of “instance” labeling, the “feature” labeling is applied to get the training data which can save lots of labeling time. Latent Dirichlet Allocation (LDA) model was involved to choose the features for labeling. Experiment results show that the proposed method can dramatically improve the performance of biomedical NER through incorporating unlabeled data by feature labeling.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Dai H et al (2010) New challenges for biological text-mining in the next decade. J Comput Sci Technol 25(1):169–179CrossRef Dai H et al (2010) New challenges for biological text-mining in the next decade. J Comput Sci Technol 25(1):169–179CrossRef
2.
Zurück zum Zitat Nadeau D, Sekine S (2007) A survey of named entity recognition and classification. Linguisticae Investigationes 30:3–26CrossRef Nadeau D, Sekine S (2007) A survey of named entity recognition and classification. Linguisticae Investigationes 30:3–26CrossRef
3.
Zurück zum Zitat Hu Q et al (2010) An efficient gene selection technique for cancer recognition based on neighborhood mutual information. Int J Mach Learn Cybern 1–12 Hu Q et al (2010) An efficient gene selection technique for cancer recognition based on neighborhood mutual information. Int J Mach Learn Cybern 1–12
4.
Zurück zum Zitat Kuncheva LI (2010) Full-class set classification using the Hungarian algorithm. Int J Mach Learn Cybern 1(1–4):53–61 Kuncheva LI (2010) Full-class set classification using the Hungarian algorithm. Int J Mach Learn Cybern 1(1–4):53–61
5.
Zurück zum Zitat Krallinger M et al (2008) Evaluation of text-mining systems for biology: overview of the Second BioCreative community challenge. Genome Biol 9(Suppl 2):1CrossRef Krallinger M et al (2008) Evaluation of text-mining systems for biology: overview of the Second BioCreative community challenge. Genome Biol 9(Suppl 2):1CrossRef
6.
Zurück zum Zitat Dai H et al (2008) BIOSMILE web search: a web application for annotating biomedical entities and relations. Nucl Acids Res 36(Web Server issue):W390 Dai H et al (2008) BIOSMILE web search: a web application for annotating biomedical entities and relations. Nucl Acids Res 36(Web Server issue):W390
7.
Zurück zum Zitat Rebholz-Schuhmann D (2008) Text processing through web services: calling Whatizit. Bioinformatics 24(2):296–298CrossRef Rebholz-Schuhmann D (2008) Text processing through web services: calling Whatizit. Bioinformatics 24(2):296–298CrossRef
8.
Zurück zum Zitat Si L, Kanungo T, Huang X (2005) Boosting performance of bio-entity recognition by combining results from multiple systems. In: Proceedings of the 5th international workshop on Bioinformatics, ACM, pp 76–83 Si L, Kanungo T, Huang X (2005) Boosting performance of bio-entity recognition by combining results from multiple systems. In: Proceedings of the 5th international workshop on Bioinformatics, ACM, pp 76–83
9.
Zurück zum Zitat Vlachos A (2007) Evaluating and combining biomedical named entity recognition systems, In: BioNLP 2007: biological, translational, and clinical language processing, pp 199–206 Vlachos A (2007) Evaluating and combining biomedical named entity recognition systems, In: BioNLP 2007: biological, translational, and clinical language processing, pp 199–206
10.
Zurück zum Zitat Saha SK, Sarkar S, Mitra PP (2009) Feature selection techniques for maximum entropy based biomedical named entity recognition. J Biomed Inform 42(5):905–911CrossRef Saha SK, Sarkar S, Mitra PP (2009) Feature selection techniques for maximum entropy based biomedical named entity recognition. J Biomed Inform 42(5):905–911CrossRef
11.
Zurück zum Zitat Lin YF et al (2004) A maximum entropy approach to biomedical named entity recognition. In: Proceedings of the 4th ACM SIGKDD Workshop on Data Mining in Bioinformatics, Citeseer, pp 56–61 Lin YF et al (2004) A maximum entropy approach to biomedical named entity recognition. In: Proceedings of the 4th ACM SIGKDD Workshop on Data Mining in Bioinformatics, Citeseer, pp 56–61
12.
Zurück zum Zitat Lee KJ, Hwang YS, Rim HC (2003) Two-phase biomedical NE recognition based on SVMs. In: Proceedings of the ACL 2003 workshop on Natural language processing in biomedicine. Association for Computational Linguistics, pp 33–40 Lee KJ, Hwang YS, Rim HC (2003) Two-phase biomedical NE recognition based on SVMs. In: Proceedings of the ACL 2003 workshop on Natural language processing in biomedicine. Association for Computational Linguistics, pp 33–40
13.
Zurück zum Zitat Li L, Zhou R, Huang D (2009) Two-phase biomedical named entity recognition using CRFs. Comput Biol Chem 33(4):334–338CrossRef Li L, Zhou R, Huang D (2009) Two-phase biomedical named entity recognition using CRFs. Comput Biol Chem 33(4):334–338CrossRef
14.
Zurück zum Zitat Zhou G, Su J (2004) Exploring deep knowledge resources in biomedical name recognition in the joint workshop on natural language processing in biomedicine and its applications. In: Proceedings of the Joint Workshop on Natural Language Processing in Biomedicine and its Applications (JNLPBA 2004), pp. 96–99 Zhou G, Su J (2004) Exploring deep knowledge resources in biomedical name recognition in the joint workshop on natural language processing in biomedicine and its applications. In: Proceedings of the Joint Workshop on Natural Language Processing in Biomedicine and its Applications (JNLPBA 2004), pp. 96–99
15.
Zurück zum Zitat Lee K et al (2004) Biomedical named entity recognition using two-phase model based on SVMs. J Biomed Inform 37(6):436–447CrossRef Lee K et al (2004) Biomedical named entity recognition using two-phase model based on SVMs. J Biomed Inform 37(6):436–447CrossRef
16.
Zurück zum Zitat Nigam K et al (2000) Text classification from labelled and unlabelled documents using EM. Mach Learn 103–134 Nigam K et al (2000) Text classification from labelled and unlabelled documents using EM. Mach Learn 103–134
17.
Zurück zum Zitat Brefeld U, Scheffer T (2006) Semi-supervised learning for structured output variables, In: Proceedings of the 23rd international conference on Machine learning, ACM New York, NY, USA: Pittsburgh, Pennsylvania, pp 145–152 Brefeld U, Scheffer T (2006) Semi-supervised learning for structured output variables, In: Proceedings of the 23rd international conference on Machine learning, ACM New York, NY, USA: Pittsburgh, Pennsylvania, pp 145–152
18.
Zurück zum Zitat Zhu X, Ghahramani Z, Lafferty J (2003) Semi-supervised learning using Gaussian fields and harmonic functions. In: the ICML-2003 Workshop on The Continuum from Labeled to Unlabeled Data, pp 912–919 Zhu X, Ghahramani Z, Lafferty J (2003) Semi-supervised learning using Gaussian fields and harmonic functions. In: the ICML-2003 Workshop on The Continuum from Labeled to Unlabeled Data, pp 912–919
19.
Zurück zum Zitat Altun Y, McAllester D, Belkin M (2006) Maximum margin semi-supervised learning for structured variables. Adv Neural Inf Process Syst 18:33–40 Altun Y, McAllester D, Belkin M (2006) Maximum margin semi-supervised learning for structured variables. Adv Neural Inf Process Syst 18:33–40
20.
Zurück zum Zitat F. Jiao, Wang S, Lee CH, Greiner R, Schuurmans D (2006) Semi-supervised conditional random fields for improved sequence segmentation and labeling, the 21st International Conference on Computational Linguistics, pp 209–216 F. Jiao, Wang S, Lee CH, Greiner R, Schuurmans D (2006) Semi-supervised conditional random fields for improved sequence segmentation and labeling, the 21st International Conference on Computational Linguistics, pp 209–216
21.
Zurück zum Zitat Small K, Roth D (2010) Margin-based active learning for structured predictions. Int J Mach Learn Cybern 1(1–4):3–25 Small K, Roth D (2010) Margin-based active learning for structured predictions. Int J Mach Learn Cybern 1(1–4):3–25
22.
Zurück zum Zitat McCallum A, Mann G, Druck G (2007) Generalized expectation criteria. Computer science technical note. University of Massachusetts, Amherst McCallum A, Mann G, Druck G (2007) Generalized expectation criteria. Computer science technical note. University of Massachusetts, Amherst
23.
Zurück zum Zitat Mann GS, McCallum A (2007) Simple, robust, scalable semi-supervised learning via expectation regularization, In: Proceedings of the 24th international conference on Machine learning, ACM, pp 593–600 Mann GS, McCallum A (2007) Simple, robust, scalable semi-supervised learning via expectation regularization, In: Proceedings of the 24th international conference on Machine learning, ACM, pp 593–600
24.
Zurück zum Zitat Mann G, McCallum A (2010) Generalized expectation criteria for semi-supervised learning with weakly labeled data. J Mach Learn Res 11:955–984MathSciNet Mann G, McCallum A (2010) Generalized expectation criteria for semi-supervised learning with weakly labeled data. J Mach Learn Res 11:955–984MathSciNet
25.
Zurück zum Zitat Druck G, Mann G, McCallum A (2007) Reducing annotation effort using generalized expectation criteria (Technical Report 2007-62), University of Massachusetts, Amherst Druck G, Mann G, McCallum A (2007) Reducing annotation effort using generalized expectation criteria (Technical Report 2007-62), University of Massachusetts, Amherst
26.
Zurück zum Zitat Blei D, Ng A, Jordan M (2003) Latent Dirichlet allocation. J Mach Learn Res 3:993–1022MATH Blei D, Ng A, Jordan M (2003) Latent Dirichlet allocation. J Mach Learn Res 3:993–1022MATH
27.
Zurück zum Zitat Rabiner L (1989) A tutorial on Hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286CrossRef Rabiner L (1989) A tutorial on Hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286CrossRef
28.
Zurück zum Zitat Lafferty J, McCallum A, Pereira F (2001) Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proc. 18th International Conf. on Machine Learning, 282–289 Lafferty J, McCallum A, Pereira F (2001) Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proc. 18th International Conf. on Machine Learning, 282–289
29.
Zurück zum Zitat Wallach H (2004) Conditional random fields: an introduction. Technical Report MS-CIS-04-21, Department of Computer and Information Science, University of Pennsylvania, p 50 Wallach H (2004) Conditional random fields: an introduction. Technical Report MS-CIS-04-21, Department of Computer and Information Science, University of Pennsylvania, p 50
30.
Zurück zum Zitat Mann, G, McCallum A (2008) Generalized expectation criteria for semi-supervised learning of conditional random fields. In: Proceeding of Association of Computational Linguistics, pp 870–878 Mann, G, McCallum A (2008) Generalized expectation criteria for semi-supervised learning of conditional random fields. In: Proceeding of Association of Computational Linguistics, pp 870–878
31.
Zurück zum Zitat Raghavan H, Madani O, Jones R (2006) Active learning with feedback on features and instances. J Mach Learn Res 7:1655–1686MathSciNetMATH Raghavan H, Madani O, Jones R (2006) Active learning with feedback on features and instances. J Mach Learn Res 7:1655–1686MathSciNetMATH
32.
Zurück zum Zitat Sun C et al (2007) Rich features based conditional random fields for biological named entities recognition. Comput Biol Med 37(9):1327–1333CrossRef Sun C et al (2007) Rich features based conditional random fields for biological named entities recognition. Comput Biol Med 37(9):1327–1333CrossRef
33.
Zurück zum Zitat Tsai T et al (2006) Integrating linguistic knowledge into a conditional random field framework to identify biomedical named entities. Expert Syst Appl 30(1):117–128CrossRef Tsai T et al (2006) Integrating linguistic knowledge into a conditional random field framework to identify biomedical named entities. Expert Syst Appl 30(1):117–128CrossRef
34.
Zurück zum Zitat Settles B (2004) Biomedical named entity recognition using conditional random fields and rich feature sets. In: International Conference on Computational Linguistics. Geneva, Switzerland, pp 104–107 Settles B (2004) Biomedical named entity recognition using conditional random fields and rich feature sets. In: International Conference on Computational Linguistics. Geneva, Switzerland, pp 104–107
35.
Zurück zum Zitat Tsai T, Wu C, Hsu W (2005) Using maximum entropy to extract biomedical named entities without dictionaries. In: Proceedings of IJCNLP2005, pp 270–275 Tsai T, Wu C, Hsu W (2005) Using maximum entropy to extract biomedical named entities without dictionaries. In: Proceedings of IJCNLP2005, pp 270–275
36.
Zurück zum Zitat Deerwester S et al (1990) Indexing by latent semantic analysis. J Am Soc Inf Sci 41(6):391–407CrossRef Deerwester S et al (1990) Indexing by latent semantic analysis. J Am Soc Inf Sci 41(6):391–407CrossRef
37.
Zurück zum Zitat Wenbo L, Le S, Dakun Z (2008) Text classification based on labeled-LDA model. Chinese J Comput 31(4):620–627MathSciNet Wenbo L, Le S, Dakun Z (2008) Text classification based on labeled-LDA model. Chinese J Comput 31(4):620–627MathSciNet
38.
Zurück zum Zitat Hofmann T (2001) Unsupervised learning by probabilistic latent semantic analysis. Mach Learn 42(1):177–196MATHCrossRef Hofmann T (2001) Unsupervised learning by probabilistic latent semantic analysis. Mach Learn 42(1):177–196MATHCrossRef
39.
Zurück zum Zitat Landauer TK, Foltz PPW, Laham D (1998) An introduction to latent semantic analysis. Discourse Process 25(2):259–284CrossRef Landauer TK, Foltz PPW, Laham D (1998) An introduction to latent semantic analysis. Discourse Process 25(2):259–284CrossRef
40.
Zurück zum Zitat Hofmann T (1999) Probabilistic latent semantic analysis. In: Proceeding of Uncertainty in Artificial Intelligence, Citeseer, pp 21–26 Hofmann T (1999) Probabilistic latent semantic analysis. In: Proceeding of Uncertainty in Artificial Intelligence, Citeseer, pp 21–26
41.
Zurück zum Zitat Boyd-Graber J, Blei D, Zhu X (2007) A topic model for word sense disambiguation. In empirical methods in natural language processing, pp 1024–1033 Boyd-Graber J, Blei D, Zhu X (2007) A topic model for word sense disambiguation. In empirical methods in natural language processing, pp 1024–1033
42.
Zurück zum Zitat Toutanova K, Johnson M (2007) A Bayesian LDA-based model for semi-supervised part-of-speech tagging. Adv Neural Inf Process Syst 1521–1528 Toutanova K, Johnson M (2007) A Bayesian LDA-based model for semi-supervised part-of-speech tagging. Adv Neural Inf Process Syst 1521–1528
43.
Zurück zum Zitat Georgescul M, Clark A, Armstrong S (2008) A comparative study of mixture models for automatic topic segmentation of multiparty dialogues. In: Proceedings of the Third International Joint Conference on Natural Language Processing, pp 925–930 Georgescul M, Clark A, Armstrong S (2008) A comparative study of mixture models for automatic topic segmentation of multiparty dialogues. In: Proceedings of the Third International Joint Conference on Natural Language Processing, pp 925–930
44.
Zurück zum Zitat Arora R, Ravindran B (2008) Latent dirichlet allocation based multi-document summarization. In: Proceedings of the Second Workshop on Analytics for Noisy Unstructured Text Data. ACM, pp 91–97 Arora R, Ravindran B (2008) Latent dirichlet allocation based multi-document summarization. In: Proceedings of the Second Workshop on Analytics for Noisy Unstructured Text Data. ACM, pp 91–97
Metadaten
Titel
Biomedical named entity recognition using generalized expectation criteria
verfasst von
Lin Yao
Chengjie Sun
Yan Wu
Xiaolong Wang
Xuan Wang
Publikationsdatum
01.12.2011
Verlag
Springer-Verlag
Erschienen in
International Journal of Machine Learning and Cybernetics / Ausgabe 4/2011
Print ISSN: 1868-8071
Elektronische ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-011-0022-3

Weitere Artikel der Ausgabe 4/2011

International Journal of Machine Learning and Cybernetics 4/2011 Zur Ausgabe

Original Article

Function P-sets

Neuer Inhalt