Skip to main content
Erschienen in:
Buchtitelbild

2017 | OriginalPaper | Buchkapitel

1. Biomimetic Materials and Structures for Sensor Applications

verfasst von : Do Hoon Lee, Wonbin Song, Byung Yang Lee

Erschienen in: Smart Sensors and Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Diverse biological tissues and structures that often exhibit remarkable physical and chemical properties can be found throughout nature. Starting from very few and simple building blocks such as collagen fibrils, nature effortlessly makes hierarchical and complex structures which are often hard to imitate with the current top-down microfabrication techniques. With the recent development of diverse assembly methods of nanobiomaterials, we have started to build biomimetic structures with diverse optical, mechanical, and electrical properties using bottom-up approaches. The properties of such biomimetic materials, when exposed to certain physical or chemical stimuli, sometimes change enough and may be utilized for sensing applications. For example, some filamentous viruses can be assembled into colorful films on solid substrates, the colors of which can change when exposed to organic solvents and volatile organic compounds. These same films, when applied with mechanical pressure, can exhibit piezoelectric properties, where mechanical pressure can be transduced to electrical signals, allowing the utilization of these structures as mechanical force sensors. In this chapter, we will discuss the current state of the biomimetic materials and structures for sensor applications, giving emphasis on hierarchical structures based on fiber building blocks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Meyers MA, Chen P-Y, Lin AY-M, Seki Y (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53:1–206CrossRef Meyers MA, Chen P-Y, Lin AY-M, Seki Y (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53:1–206CrossRef
2.
Zurück zum Zitat Xia F, Jiang L (2008) Bio-inspired, smart, multiscale interfacial materials. Adv Mater 20:2842–2858CrossRef Xia F, Jiang L (2008) Bio-inspired, smart, multiscale interfacial materials. Adv Mater 20:2842–2858CrossRef
3.
Zurück zum Zitat Lenau T, Stroble J, Stone R, Watkins S (2009) An overview of biomimetic sensor technology. Sens Rev 29:112–119CrossRef Lenau T, Stroble J, Stone R, Watkins S (2009) An overview of biomimetic sensor technology. Sens Rev 29:112–119CrossRef
4.
Zurück zum Zitat Sanchez C, Arribart H, Guille MMG (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 4:277–288CrossRef Sanchez C, Arribart H, Guille MMG (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 4:277–288CrossRef
5.
Zurück zum Zitat Johnson EAC, Bonser RHC, Jeronimidis G (2009) Recent advances in biomimetic sensing technologies. Philos Trans R Soc Lond A 367:1559–1569CrossRef Johnson EAC, Bonser RHC, Jeronimidis G (2009) Recent advances in biomimetic sensing technologies. Philos Trans R Soc Lond A 367:1559–1569CrossRef
6.
Zurück zum Zitat Mulvaney SP, Sheehan PE (2014) Nature inspires sensors to do more with less. ACS Nano 8:9729–9732CrossRef Mulvaney SP, Sheehan PE (2014) Nature inspires sensors to do more with less. ACS Nano 8:9729–9732CrossRef
7.
Zurück zum Zitat Stroble JK, Stone RB, Watkins SE (2009) An overview of biomimetic sensor technology. Sens Rev 29:112–119CrossRef Stroble JK, Stone RB, Watkins SE (2009) An overview of biomimetic sensor technology. Sens Rev 29:112–119CrossRef
8.
Zurück zum Zitat Casas J, Steinmann T, Krijnen G (2010) Why do insects have such a high density of flow-sensing hairs? Insights from the hydromechanics of biomimetic MEMS sensors. J R Soc Interface 7:1487–1495CrossRef Casas J, Steinmann T, Krijnen G (2010) Why do insects have such a high density of flow-sensing hairs? Insights from the hydromechanics of biomimetic MEMS sensors. J R Soc Interface 7:1487–1495CrossRef
9.
Zurück zum Zitat Junliang T, Xiong Y (2012) Hair flow sensors: from bio-inspiration to bio-mimicking—a review. Smart Mater Struct 21:113001CrossRef Junliang T, Xiong Y (2012) Hair flow sensors: from bio-inspiration to bio-mimicking—a review. Smart Mater Struct 21:113001CrossRef
10.
Zurück zum Zitat Liu C (2007) Micromachined biomimetic artificial haircell sensors. Bioinspir Biomim 2:S162CrossRef Liu C (2007) Micromachined biomimetic artificial haircell sensors. Bioinspir Biomim 2:S162CrossRef
11.
Zurück zum Zitat Krijnen GJM, Dijkstra M, van Baar JJ, Shankar SS, Kuipers WJ, de Boer RJH, Altpeter D, Lammerink TSJ, Wiegerink R (2006) MEMS based hairflow-sensors as model systems for acoustic perception studies. Nanotechnology 17:S84 Krijnen GJM, Dijkstra M, van Baar JJ, Shankar SS, Kuipers WJ, de Boer RJH, Altpeter D, Lammerink TSJ, Wiegerink R (2006) MEMS based hairflow-sensors as model systems for acoustic perception studies. Nanotechnology 17:S84
12.
Zurück zum Zitat Hein M, Maqableh MM, Delahunt MJ, Tondra M, Flatau AB, Shield CK, Stadler BJ (2013) Fabrication of bioinspired inorganic nanocilia sensors. IEEE Trans Magn 49:191–196CrossRef Hein M, Maqableh MM, Delahunt MJ, Tondra M, Flatau AB, Shield CK, Stadler BJ (2013) Fabrication of bioinspired inorganic nanocilia sensors. IEEE Trans Magn 49:191–196CrossRef
13.
Zurück zum Zitat Schroeder P, Schotter J, Shoshi A, Eggeling M, Bethge O, Hütten A, Brückl H (2011) Artificial cilia of magnetically tagged polymer nanowires for biomimetic mechanosensing. Bioinspir Biomim 6:046007CrossRef Schroeder P, Schotter J, Shoshi A, Eggeling M, Bethge O, Hütten A, Brückl H (2011) Artificial cilia of magnetically tagged polymer nanowires for biomimetic mechanosensing. Bioinspir Biomim 6:046007CrossRef
14.
Zurück zum Zitat Nguyen N, Jones DL, Yang Y, Liu C (2011) Flow vision for autonomous underwater vehicles via an artificial lateral line. EURASIP J Adv Signal Process 2011:9CrossRef Nguyen N, Jones DL, Yang Y, Liu C (2011) Flow vision for autonomous underwater vehicles via an artificial lateral line. EURASIP J Adv Signal Process 2011:9CrossRef
15.
Zurück zum Zitat Droogendijk H, de Boer MJ, Sanders RGP, Krijnen GJM (2015) Advantages of electrostatic spring hardening in biomimetic hair flow sensors. J Microelectromech Syst 24:1415–1425CrossRef Droogendijk H, de Boer MJ, Sanders RGP, Krijnen GJM (2015) Advantages of electrostatic spring hardening in biomimetic hair flow sensors. J Microelectromech Syst 24:1415–1425CrossRef
16.
Zurück zum Zitat Tee BCK, Chortos A, Berndt A, Nguyen AK, Tom A, McGuire A, Lin ZC, Tien K, Bae W-G, Wang H, Mei P, Chou H-H, Cui B, Deisseroth K, Ng TN, Bao Z (2015) A skin-inspired organic digital mechanoreceptor. Science 350:313–316CrossRef Tee BCK, Chortos A, Berndt A, Nguyen AK, Tom A, McGuire A, Lin ZC, Tien K, Bae W-G, Wang H, Mei P, Chou H-H, Cui B, Deisseroth K, Ng TN, Bao Z (2015) A skin-inspired organic digital mechanoreceptor. Science 350:313–316CrossRef
17.
Zurück zum Zitat Sheng L, Liang Y, Jiang L, Wang Q, Wei T, Qu L, Fan Z (2015) Bubble‐decorated honeycomb‐like graphene film as ultrahigh sensitivity pressure sensors. Adv Funct Mater 25:6545–6551CrossRef Sheng L, Liang Y, Jiang L, Wang Q, Wei T, Qu L, Fan Z (2015) Bubble‐decorated honeycomb‐like graphene film as ultrahigh sensitivity pressure sensors. Adv Funct Mater 25:6545–6551CrossRef
18.
Zurück zum Zitat Su B, Gong S, Ma Z, Yap LW, Cheng W (2015) Mimosa‐inspired design of a flexible pressure sensor with touch sensitivity. Small 11:1886–1891CrossRef Su B, Gong S, Ma Z, Yap LW, Cheng W (2015) Mimosa‐inspired design of a flexible pressure sensor with touch sensitivity. Small 11:1886–1891CrossRef
19.
Zurück zum Zitat Pang C, Lee G-Y, Kim T-I, Kim SM, Kim HN, Ahn S-H, Suh K-Y (2012) A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater 11:795–801CrossRef Pang C, Lee G-Y, Kim T-I, Kim SM, Kim HN, Ahn S-H, Suh K-Y (2012) A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater 11:795–801CrossRef
20.
Zurück zum Zitat Ha M, Lim S, Park J, Um DS, Lee Y, Ko H (2015) Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure‐sensitive electronic skins. Adv Funct Mater 25:2841–2849CrossRef Ha M, Lim S, Park J, Um DS, Lee Y, Ko H (2015) Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure‐sensitive electronic skins. Adv Funct Mater 25:2841–2849CrossRef
21.
Zurück zum Zitat Fratzl P, Barth FG (2009) Biomaterial systems for mechanosensing and actuation. Nature 462:442–448CrossRef Fratzl P, Barth FG (2009) Biomaterial systems for mechanosensing and actuation. Nature 462:442–448CrossRef
22.
Zurück zum Zitat Kang D, Pikhitsa PV, Choi YW, Lee C, Shin SS, Piao L, Park B, Suh K-Y, Kim T-I, Choi M (2014) Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516:222–226CrossRef Kang D, Pikhitsa PV, Choi YW, Lee C, Shin SS, Piao L, Park B, Suh K-Y, Kim T-I, Choi M (2014) Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516:222–226CrossRef
23.
24.
Zurück zum Zitat Hammock ML, Chortos A, Tee BCK, Tok JBH, Bao Z (2013) 25th anniversary article: the evolution of electronic skin (e‐skin): a brief history, design considerations, and recent progress. Adv Mater 25:5997–6038CrossRef Hammock ML, Chortos A, Tee BCK, Tok JBH, Bao Z (2013) 25th anniversary article: the evolution of electronic skin (e‐skin): a brief history, design considerations, and recent progress. Adv Mater 25:5997–6038CrossRef
25.
Zurück zum Zitat Park J, Kim M, Lee Y, Lee HS, Ko H (2015) Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci Adv 1:e1500661CrossRef Park J, Kim M, Lee Y, Lee HS, Ko H (2015) Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci Adv 1:e1500661CrossRef
26.
Zurück zum Zitat Tee BC, Wang C, Allen R, Bao Z (2012) An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol 7:825–832CrossRef Tee BC, Wang C, Allen R, Bao Z (2012) An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol 7:825–832CrossRef
27.
Zurück zum Zitat Hou C, Huang T, Wang H, Yu H, Zhang Q, Li Y (2013) A strong and stretchable self-healing film with self-activated pressure sensitivity for potential artificial skin applications. Sci Rep 3:3188 Hou C, Huang T, Wang H, Yu H, Zhang Q, Li Y (2013) A strong and stretchable self-healing film with self-activated pressure sensitivity for potential artificial skin applications. Sci Rep 3:3188
28.
Zurück zum Zitat Kim J, Lee M, Shim HJ, Ghaffari R, Cho HR, Son D, Jung YH, Soh M, Choi C, Jung S, Chu K, Jeon D, Lee S-T, Kim JH, Choi SH, Hyeon T, Kim D-H (2014) Stretchable silicon nanoribbon electronics for skin prosthesis. Nat Commun 5:5747 Kim J, Lee M, Shim HJ, Ghaffari R, Cho HR, Son D, Jung YH, Soh M, Choi C, Jung S, Chu K, Jeon D, Lee S-T, Kim JH, Choi SH, Hyeon T, Kim D-H (2014) Stretchable silicon nanoribbon electronics for skin prosthesis. Nat Commun 5:5747
29.
Zurück zum Zitat Scheibert J, Leurent S, Prevost A, Debrégeas G (2009) The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 323:1503–1506CrossRef Scheibert J, Leurent S, Prevost A, Debrégeas G (2009) The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 323:1503–1506CrossRef
30.
Zurück zum Zitat Zhang Y (2010) Sensitivity enhancement of a micro-scale biomimetic tactile sensor with epidermal ridges. J Micromech Microeng 20:085012CrossRef Zhang Y (2010) Sensitivity enhancement of a micro-scale biomimetic tactile sensor with epidermal ridges. J Micromech Microeng 20:085012CrossRef
31.
Zurück zum Zitat Lee LP, Szema R (2005) Inspirations from biological optics for advanced photonic systems. Science 310:1148–1150CrossRef Lee LP, Szema R (2005) Inspirations from biological optics for advanced photonic systems. Science 310:1148–1150CrossRef
32.
Zurück zum Zitat Song YM, Xie Y, Malyarchuk V, Xiao J, Jung I, Choi K-J, Liu Z, Park H, Lu C, Kim R-H (2013) Digital cameras with designs inspired by the arthropod eye. Nature 497:95–99CrossRef Song YM, Xie Y, Malyarchuk V, Xiao J, Jung I, Choi K-J, Liu Z, Park H, Lu C, Kim R-H (2013) Digital cameras with designs inspired by the arthropod eye. Nature 497:95–99CrossRef
33.
Zurück zum Zitat Floreano D, Pericet-Camara R, Viollet S, Ruffier F, Brückner A, Leitel R, Buss W, Menouni M, Expert F, Juston R, Dobrzynski MK, L’Eplattenier G, Recktenwald F, Mallot HA, Franceschini N (2013) Miniature curved artificial compound eyes. Proc Natl Acad Sci 110:9267–9272CrossRef Floreano D, Pericet-Camara R, Viollet S, Ruffier F, Brückner A, Leitel R, Buss W, Menouni M, Expert F, Juston R, Dobrzynski MK, L’Eplattenier G, Recktenwald F, Mallot HA, Franceschini N (2013) Miniature curved artificial compound eyes. Proc Natl Acad Sci 110:9267–9272CrossRef
34.
Zurück zum Zitat Wilson AD, Baietto M (2009) Applications and advances in electronic-nose technologies. Sensors 9:5099–5148CrossRef Wilson AD, Baietto M (2009) Applications and advances in electronic-nose technologies. Sensors 9:5099–5148CrossRef
35.
Zurück zum Zitat Spitzer D, Cottineau T, Piazzon N, Josset S, Schnell F, Pronkin SN, Savinova ER, Keller V (2012) Bio‐inspired nanostructured sensor for the detection of ultralow concentrations of explosives. Angew Chem Int Ed 51:5334–5338CrossRef Spitzer D, Cottineau T, Piazzon N, Josset S, Schnell F, Pronkin SN, Savinova ER, Keller V (2012) Bio‐inspired nanostructured sensor for the detection of ultralow concentrations of explosives. Angew Chem Int Ed 51:5334–5338CrossRef
36.
Zurück zum Zitat Zhang W, Tian J, Wang YA, Fang X, Huang Y, Chen W, Liu Q, Zhang D (2014) Single porous SnO2 microtubes templated from Papilio maacki bristles: new structure towards superior gas sensing. J Mater Chem A 2:4543–4550CrossRef Zhang W, Tian J, Wang YA, Fang X, Huang Y, Chen W, Liu Q, Zhang D (2014) Single porous SnO2 microtubes templated from Papilio maacki bristles: new structure towards superior gas sensing. J Mater Chem A 2:4543–4550CrossRef
37.
Zurück zum Zitat Wang J, Zhao X, Li J, Kuang X, Fan Y, Wei G, Su Z (2014) Electrostatic assembly of peptide nanofiber-biomimetic silver nanowires onto graphene for electrochemical sensors. ACS Macro Lett 3:529–533CrossRef Wang J, Zhao X, Li J, Kuang X, Fan Y, Wei G, Su Z (2014) Electrostatic assembly of peptide nanofiber-biomimetic silver nanowires onto graphene for electrochemical sensors. ACS Macro Lett 3:529–533CrossRef
38.
Zurück zum Zitat Zhang D, Lu Y, Zhang Q, Yao Y, Li S, Li H, Zhuang S, Jiang J, Liu GL, Liu Q (2015) Nanoplasmonic monitoring of odorants binding to olfactory proteins from honeybee as biosensor for chemical detection. Sens Actuators B 221:341–349CrossRef Zhang D, Lu Y, Zhang Q, Yao Y, Li S, Li H, Zhuang S, Jiang J, Liu GL, Liu Q (2015) Nanoplasmonic monitoring of odorants binding to olfactory proteins from honeybee as biosensor for chemical detection. Sens Actuators B 221:341–349CrossRef
39.
Zurück zum Zitat Lee SH, Kwon OS, Song HS, Park SJ, Sung JH, Jang J, Park TH (2012) Mimicking the human smell sensing mechanism with an artificial nose platform. Biomaterials 33:1722–1729CrossRef Lee SH, Kwon OS, Song HS, Park SJ, Sung JH, Jang J, Park TH (2012) Mimicking the human smell sensing mechanism with an artificial nose platform. Biomaterials 33:1722–1729CrossRef
40.
Zurück zum Zitat Goldsmith BR, Mitala JJ Jr, Josue J, Castro A, Lerner MB, Bayburt TH, Khamis SM, Jones RA, Brand JG, Sligar SG (2011) Biomimetic chemical sensors using nanoelectronic readout of olfactory receptor proteins. ACS Nano 5:5408–5416CrossRef Goldsmith BR, Mitala JJ Jr, Josue J, Castro A, Lerner MB, Bayburt TH, Khamis SM, Jones RA, Brand JG, Sligar SG (2011) Biomimetic chemical sensors using nanoelectronic readout of olfactory receptor proteins. ACS Nano 5:5408–5416CrossRef
41.
Zurück zum Zitat Kim TH, Lee BY, Jaworski J, Yokoyama K, Chung W-J, Wang E, Hong S, Majumdar A, Lee S-W (2011) Selective and sensitive TNT sensors using biomimetic polydiacetylene-coated CNT-FETs. ACS Nano 5:2824–2830CrossRef Kim TH, Lee BY, Jaworski J, Yokoyama K, Chung W-J, Wang E, Hong S, Majumdar A, Lee S-W (2011) Selective and sensitive TNT sensors using biomimetic polydiacetylene-coated CNT-FETs. ACS Nano 5:2824–2830CrossRef
42.
Zurück zum Zitat Kwon OS, Song HS, Park SJ, Lee SH, An JH, Park JW, Yang H, Yoon H, Bae J, Park TH, Jang J (2015) An ultrasensitive, selective, multiplexed superbioelectronic nose that mimics the human sense of smell. Nano Lett 15:6559–6567CrossRef Kwon OS, Song HS, Park SJ, Lee SH, An JH, Park JW, Yang H, Yoon H, Bae J, Park TH, Jang J (2015) An ultrasensitive, selective, multiplexed superbioelectronic nose that mimics the human sense of smell. Nano Lett 15:6559–6567CrossRef
43.
Zurück zum Zitat Guo CX, Ng SR, Khoo SY, Zheng X, Chen P, Li CM (2012) RGD-peptide functionalized graphene biomimetic live-cell sensor for real-time detection of nitric oxide molecules. ACS Nano 6:6944–6951CrossRef Guo CX, Ng SR, Khoo SY, Zheng X, Chen P, Li CM (2012) RGD-peptide functionalized graphene biomimetic live-cell sensor for real-time detection of nitric oxide molecules. ACS Nano 6:6944–6951CrossRef
44.
Zurück zum Zitat Song HS, Kwon OS, Lee SH, Park SJ, Kim U-K, Jang J, Park TH (2013) Human taste receptor-functionalized field effect transistor as a human-like nanobioelectronic tongue. Nano Lett 13:172–178CrossRef Song HS, Kwon OS, Lee SH, Park SJ, Kim U-K, Jang J, Park TH (2013) Human taste receptor-functionalized field effect transistor as a human-like nanobioelectronic tongue. Nano Lett 13:172–178CrossRef
45.
Zurück zum Zitat Lee M, Jung JW, Kim D, Ahn Y-J, Hong S, Kwon HW (2015) Discrimination of umami tastants using floating electrode-based bioelectronic tongue mimicking insect taste systems. ACS Nano 9:11728–11736CrossRef Lee M, Jung JW, Kim D, Ahn Y-J, Hong S, Kwon HW (2015) Discrimination of umami tastants using floating electrode-based bioelectronic tongue mimicking insect taste systems. ACS Nano 9:11728–11736CrossRef
46.
Zurück zum Zitat Ge J, Yin Y (2011) Responsive photonic crystals. Angew Chem Int Ed 50:1492–1522CrossRef Ge J, Yin Y (2011) Responsive photonic crystals. Angew Chem Int Ed 50:1492–1522CrossRef
47.
Zurück zum Zitat Vukusic P, Sambles JR (2003) Photonic structures in biology. Nature 424:852–855CrossRef Vukusic P, Sambles JR (2003) Photonic structures in biology. Nature 424:852–855CrossRef
48.
Zurück zum Zitat Doucet SM, Meadows MG (2009) Iridescence: a functional perspective. J R Soc Interface 6:S115–S132CrossRef Doucet SM, Meadows MG (2009) Iridescence: a functional perspective. J R Soc Interface 6:S115–S132CrossRef
49.
Zurück zum Zitat Zhao Y, Xie Z, Gu H, Zhu C, Gu Z (2012) Bio-inspired variable structural color materials. Chem Soc Rev 41:3297–3317CrossRef Zhao Y, Xie Z, Gu H, Zhu C, Gu Z (2012) Bio-inspired variable structural color materials. Chem Soc Rev 41:3297–3317CrossRef
50.
Zurück zum Zitat Kolle M, Salgard-Cunha PM, Scherer MR, Huang F, Vukusic P, Mahajan S, Baumberg JJ, Steiner U (2010) Mimicking the colourful wing scale structure of the Papilio blumei butterfly. Nat Nanotechnol 5:511–515CrossRef Kolle M, Salgard-Cunha PM, Scherer MR, Huang F, Vukusic P, Mahajan S, Baumberg JJ, Steiner U (2010) Mimicking the colourful wing scale structure of the Papilio blumei butterfly. Nat Nanotechnol 5:511–515CrossRef
51.
Zurück zum Zitat Kim JH, Moon JH, Lee S-Y, Park J (2010) Biologically inspired humidity sensor based on three-dimensional photonic crystals. Appl Phys Lett 97:103701CrossRef Kim JH, Moon JH, Lee S-Y, Park J (2010) Biologically inspired humidity sensor based on three-dimensional photonic crystals. Appl Phys Lett 97:103701CrossRef
52.
Zurück zum Zitat Bai L, Xie Z, Wang W, Yuan C, Zhao Y, Mu Z, Zhong Q, Gu Z (2014) Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing. ACS Nano 8:11094–11100CrossRef Bai L, Xie Z, Wang W, Yuan C, Zhao Y, Mu Z, Zhong Q, Gu Z (2014) Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing. ACS Nano 8:11094–11100CrossRef
53.
Zurück zum Zitat Hou J, Zhang H, Yang Q, Li M, Song Y, Jiang L (2014) Bio‐inspired photonic‐crystal microchip for fluorescent ultratrace detection. Angew Chem 126:5901–5905CrossRef Hou J, Zhang H, Yang Q, Li M, Song Y, Jiang L (2014) Bio‐inspired photonic‐crystal microchip for fluorescent ultratrace detection. Angew Chem 126:5901–5905CrossRef
54.
Zurück zum Zitat Zang X, Tan Y, Lv Z, Gu J, Zhang D (2012) Moth wing scales as optical pH sensors. Sens Actuators B 166–167:824–828CrossRef Zang X, Tan Y, Lv Z, Gu J, Zhang D (2012) Moth wing scales as optical pH sensors. Sens Actuators B 166–167:824–828CrossRef
55.
Zurück zum Zitat Chou H-H, Nguyen A, Chortos A, To JWF, Lu C, Mei J, Kurosawa T, Bae WG, Tok JBH, Bao Z (2015) A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat Commun 6:8011 Chou H-H, Nguyen A, Chortos A, To JWF, Lu C, Mei J, Kurosawa T, Bae WG, Tok JBH, Bao Z (2015) A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat Commun 6:8011
56.
Zurück zum Zitat Yu C, Li Y, Zhang X, Huang X, Malyarchuk V, Wang S, Shi Y, Gao L, Su Y, Zhang Y, Xu H, Hanlon RT, Huang Y, Rogers JA (2014) Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins. Proc Natl Acad Sci 111:12998–13003CrossRef Yu C, Li Y, Zhang X, Huang X, Malyarchuk V, Wang S, Shi Y, Gao L, Su Y, Zhang Y, Xu H, Hanlon RT, Huang Y, Rogers JA (2014) Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins. Proc Natl Acad Sci 111:12998–13003CrossRef
57.
Zurück zum Zitat Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef
58.
Zurück zum Zitat Kim J-H, Mun S, Ko H-U, Yun G-Y, Kim J (2014) Disposable chemical sensors and biosensors made on cellulose paper. Nanotechnology 25:092001CrossRef Kim J-H, Mun S, Ko H-U, Yun G-Y, Kim J (2014) Disposable chemical sensors and biosensors made on cellulose paper. Nanotechnology 25:092001CrossRef
59.
Zurück zum Zitat Yun S, Kim J (2010) Multi-walled carbon nanotubes–cellulose paper for a chemical vapor sensor. Sens Actuators B 150:308–313CrossRef Yun S, Kim J (2010) Multi-walled carbon nanotubes–cellulose paper for a chemical vapor sensor. Sens Actuators B 150:308–313CrossRef
60.
Zurück zum Zitat Qi H, Mäder E, Liu J (2013) Unique water sensors based on carbon nanotube–cellulose composites. Sens Actuators B 185:225–230CrossRef Qi H, Mäder E, Liu J (2013) Unique water sensors based on carbon nanotube–cellulose composites. Sens Actuators B 185:225–230CrossRef
61.
Zurück zum Zitat Qi H, Liu J, Pionteck J, Pötschke P, Mäder E (2015) Carbon nanotube–cellulose composite aerogels for vapour sensing. Sens Actuators B 213:20–26CrossRef Qi H, Liu J, Pionteck J, Pötschke P, Mäder E (2015) Carbon nanotube–cellulose composite aerogels for vapour sensing. Sens Actuators B 213:20–26CrossRef
62.
Zurück zum Zitat Mahadeva SK, Yun S, Kim J (2011) Flexible humidity and temperature sensor based on cellulose–polypyrrole nanocomposite. Sens Actuators, A 165:194–199CrossRef Mahadeva SK, Yun S, Kim J (2011) Flexible humidity and temperature sensor based on cellulose–polypyrrole nanocomposite. Sens Actuators, A 165:194–199CrossRef
63.
Zurück zum Zitat Hu W, Chen S, Liu L, Ding B, Wang H (2011) Formaldehyde sensors based on nanofibrous polyethyleneimine/bacterial cellulose membranes coated quartz crystal microbalance. Sens Actuators B 157:554–559CrossRef Hu W, Chen S, Liu L, Ding B, Wang H (2011) Formaldehyde sensors based on nanofibrous polyethyleneimine/bacterial cellulose membranes coated quartz crystal microbalance. Sens Actuators B 157:554–559CrossRef
64.
Zurück zum Zitat Maniruzzaman M, Jang S-D, Kim J (2012) Titanium dioxide–cellulose hybrid nanocomposite and its glucose biosensor application. Mater Sci Eng B 177:844–848CrossRef Maniruzzaman M, Jang S-D, Kim J (2012) Titanium dioxide–cellulose hybrid nanocomposite and its glucose biosensor application. Mater Sci Eng B 177:844–848CrossRef
65.
Zurück zum Zitat Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227CrossRef Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227CrossRef
66.
Zurück zum Zitat Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238CrossRef Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238CrossRef
67.
Zurück zum Zitat Xu S, Lu X, Yao C, Huang F, Jiang H, Hua W, Na N, Liu H, Ouyang J (2014) A visual sensor array for pattern recognition analysis of proteins using novel blue-emitting fluorescent gold nanoclusters. Anal Chem 86:11634–11639CrossRef Xu S, Lu X, Yao C, Huang F, Jiang H, Hua W, Na N, Liu H, Ouyang J (2014) A visual sensor array for pattern recognition analysis of proteins using novel blue-emitting fluorescent gold nanoclusters. Anal Chem 86:11634–11639CrossRef
68.
Zurück zum Zitat Ju YM, Yu B, West L, Moussy Y, Moussy F (2010) A novel porous collagen scaffold around an implantable biosensor for improving biocompatibility. II. Long‐term in vitro/in vivo sensitivity characteristics of sensors with NDGA‐or GA‐crosslinked collagen scaffolds. J Biomed Mater Res A 92:650–658 Ju YM, Yu B, West L, Moussy Y, Moussy F (2010) A novel porous collagen scaffold around an implantable biosensor for improving biocompatibility. II. Long‐term in vitro/in vivo sensitivity characteristics of sensors with NDGA‐or GA‐crosslinked collagen scaffolds. J Biomed Mater Res A 92:650–658
69.
Zurück zum Zitat Wang Z-H, Takada N, Uno H, Ishizuka T, Yawo H, Urisu T (2012) Positioning of the sensor cell on the sensing area using cell trapping pattern in incubation type planar patch clamp biosensor. Colloids Surf B Biointerfaces 96:44–49CrossRef Wang Z-H, Takada N, Uno H, Ishizuka T, Yawo H, Urisu T (2012) Positioning of the sensor cell on the sensing area using cell trapping pattern in incubation type planar patch clamp biosensor. Colloids Surf B Biointerfaces 96:44–49CrossRef
70.
Zurück zum Zitat Farrar D, Ren K, Cheng D, Kim S, Moon W, Wilson WL, West JE, Yu SM (2011) Permanent polarity and piezoelectricity of electrospun α-helical poly(α-amino acid) fibers. Adv Mater 23:3954–3958CrossRef Farrar D, Ren K, Cheng D, Kim S, Moon W, Wilson WL, West JE, Yu SM (2011) Permanent polarity and piezoelectricity of electrospun α-helical poly(α-amino acid) fibers. Adv Mater 23:3954–3958CrossRef
71.
Zurück zum Zitat Chung W-J, Oh J-W, Kwak K, Lee BY, Meyer J, Wang E, Hexemer A, Lee S-W (2011) Biomimetic self-templating supramolecular structures. Nature 478:364–368CrossRef Chung W-J, Oh J-W, Kwak K, Lee BY, Meyer J, Wang E, Hexemer A, Lee S-W (2011) Biomimetic self-templating supramolecular structures. Nature 478:364–368CrossRef
72.
Zurück zum Zitat Lee BY, Zhang J, Zueger C, Chung W-J, Yoo SY, Wang E, Meyer J, Ramesh R, Lee S-W (2012) Virus-based piezoelectric energy generation. Nat Nanotechnol 7:351–356CrossRef Lee BY, Zhang J, Zueger C, Chung W-J, Yoo SY, Wang E, Meyer J, Ramesh R, Lee S-W (2012) Virus-based piezoelectric energy generation. Nat Nanotechnol 7:351–356CrossRef
73.
Zurück zum Zitat Oh J-W, Chung W-J, Heo K, Jin H-E, Lee BY, Wang E, Zueger C, Wong W, Meyer J, Kim C (2014) Biomimetic virus-based colourimetric sensors. Nat Commun 5 Oh J-W, Chung W-J, Heo K, Jin H-E, Lee BY, Wang E, Zueger C, Wong W, Meyer J, Kim C (2014) Biomimetic virus-based colourimetric sensors. Nat Commun 5
Metadaten
Titel
Biomimetic Materials and Structures for Sensor Applications
verfasst von
Do Hoon Lee
Wonbin Song
Byung Yang Lee
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-33201-7_1

Neuer Inhalt