Skip to main content

2024 | OriginalPaper | Buchkapitel

Biomimetics and 4D Printing: A Synergy for the Development of Innovative Materials

verfasst von : Santina Di Salvo

Erschienen in: Biomimetics, Biodesign and Bionics

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter explores the intersection of biomimetics and 4D printing for the promising development of innovative materials. Biomimetics, or biomimicry, founded on inspiration from natural elements, provides advanced engineering solutions and strategies through the imitation of biological design and mechanisms. On the other hand, 4D printing, a revolution in the field of manufacturing, allows for the creation of dynamic and time-adaptable structures over time. In this context, the conceptual foundations and applications of both disciplines are analyzed in depth, in order to illustrate how these two complementary areas can be synergistically integrated, leading to materials capable of adapting to changing environmental conditions and improving performance in industrial and technological sectors. Through key examples of potential and cutting-edge research, the chapter demonstrates how the intersection of biomimicry and 4D printing can pave the way for a new class of functional and intelligent materials with broad application prospects, even in architecture.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Benyus, J. M. (1997). Biomimicry: Innovation inspired by nature (p. 320). Morrow. Benyus, J. M. (1997). Biomimicry: Innovation inspired by nature (p. 320). Morrow.
2.
Zurück zum Zitat ElDin, N. N., Abdou, A., & Abd ElGawad, I. (2016). Biomimetic potentials for building envelope adaptation in Egypt. Procedia Environmental Sciences, 34, 375–386.CrossRef ElDin, N. N., Abdou, A., & Abd ElGawad, I. (2016). Biomimetic potentials for building envelope adaptation in Egypt. Procedia Environmental Sciences, 34, 375–386.CrossRef
3.
Zurück zum Zitat Zhao, N., Wang, Z., Cai, C., Shen, H., Liang, F., Wang, D., & Xu, J. (2014). Bioinspired materials: From low to high dimensional structure. Advanced Materials, 26(41), 6994–7017.CrossRef Zhao, N., Wang, Z., Cai, C., Shen, H., Liang, F., Wang, D., & Xu, J. (2014). Bioinspired materials: From low to high dimensional structure. Advanced Materials, 26(41), 6994–7017.CrossRef
4.
Zurück zum Zitat Snell-Rood, E. (2016). Interdisciplinarity: Bring biologists into biomimetics. Nature, 529(7586), 277–278.CrossRef Snell-Rood, E. (2016). Interdisciplinarity: Bring biologists into biomimetics. Nature, 529(7586), 277–278.CrossRef
5.
Zurück zum Zitat Tibbits, S. (2013). The emergence of 4D printing| TED talk. Tibbits, S. (2013). The emergence of 4D printing| TED talk.
6.
Zurück zum Zitat Kotz, F., Helmer, D., & Rapp, B. E. (2020). Emerging technologies and materials for high-resolution 3D printing of microfluidic chips. Microfluidics in Biotechnology, 37–66. Kotz, F., Helmer, D., & Rapp, B. E. (2020). Emerging technologies and materials for high-resolution 3D printing of microfluidic chips. Microfluidics in Biotechnology, 37–66.
7.
Zurück zum Zitat Ge, Q., Sakhaei, A. H., Lee, H., Dunn, C. K., Fang, N. X., & Dunn, M. L. (2016). Multimaterial 4D printing with tailorable shape memory polymers. Scientific Reports, 6(1), 31110.CrossRef Ge, Q., Sakhaei, A. H., Lee, H., Dunn, C. K., Fang, N. X., & Dunn, M. L. (2016). Multimaterial 4D printing with tailorable shape memory polymers. Scientific Reports, 6(1), 31110.CrossRef
8.
Zurück zum Zitat Guan, Z., Wang, L., & Bae, J. (2022). Advances in 4D printing of liquid crystalline elastomers: Materials, techniques, and applications. Materials Horizons, 9(7), 1825–1849.CrossRef Guan, Z., Wang, L., & Bae, J. (2022). Advances in 4D printing of liquid crystalline elastomers: Materials, techniques, and applications. Materials Horizons, 9(7), 1825–1849.CrossRef
9.
Zurück zum Zitat Lai, J., Ye, X., Liu, J., Wang, C., Li, J., Wang, X., et al. (2021). 4D printing of highly printable and shape morphing hydrogels composed of alginate and methylcellulose. Materials & Design, 205, 109699.CrossRef Lai, J., Ye, X., Liu, J., Wang, C., Li, J., Wang, X., et al. (2021). 4D printing of highly printable and shape morphing hydrogels composed of alginate and methylcellulose. Materials & Design, 205, 109699.CrossRef
10.
Zurück zum Zitat Magalhães, M. I., & Almeida, A. P. (2023). Nature-inspired cellulose-based active materials: From 2D to 4D. Applied Biosciences, 2(1), 94–114.CrossRef Magalhães, M. I., & Almeida, A. P. (2023). Nature-inspired cellulose-based active materials: From 2D to 4D. Applied Biosciences, 2(1), 94–114.CrossRef
11.
Zurück zum Zitat Yang, Y., Song, X., Li, X., Chen, Z., Zhou, C., Zhou, Q., & Chen, Y. (2018). Recent progress in biomimetic additive manufacturing technology: From materials to functional structures. Advanced Materials, 30(36), 1706539.CrossRef Yang, Y., Song, X., Li, X., Chen, Z., Zhou, C., Zhou, Q., & Chen, Y. (2018). Recent progress in biomimetic additive manufacturing technology: From materials to functional structures. Advanced Materials, 30(36), 1706539.CrossRef
12.
Zurück zum Zitat Jamei, E., & Vrcelj, Z. (2021). Biomimicry and the built environment, learning from nature’s solutions. Applied Sciences, 11(16), 7514.CrossRef Jamei, E., & Vrcelj, Z. (2021). Biomimicry and the built environment, learning from nature’s solutions. Applied Sciences, 11(16), 7514.CrossRef
13.
Zurück zum Zitat Di Salvo, S. (2018). Advances in research for biomimetic materials. Advanced Materials Research, 1149, 28–40.CrossRef Di Salvo, S. (2018). Advances in research for biomimetic materials. Advanced Materials Research, 1149, 28–40.CrossRef
14.
Zurück zum Zitat Chen, Y., Dang, B., Wang, C., Wang, Y., Yang, Y., Liu, M., et al. (2023). Intelligent designs from nature: Biomimetic applications in wood technology. Progress in Materials Science, 101164. Chen, Y., Dang, B., Wang, C., Wang, Y., Yang, Y., Liu, M., et al. (2023). Intelligent designs from nature: Biomimetic applications in wood technology. Progress in Materials Science, 101164.
15.
Zurück zum Zitat Luz, G. M., & Mano, J. F. (2010). Mineralized structures in nature: Examples and inspirations for the design of new composite materials and biomaterials. Composites Science and Technology, 70(13), 1777–1788.CrossRef Luz, G. M., & Mano, J. F. (2010). Mineralized structures in nature: Examples and inspirations for the design of new composite materials and biomaterials. Composites Science and Technology, 70(13), 1777–1788.CrossRef
16.
Zurück zum Zitat Vates, U. K., Mishra, S., & Kanu, N. J. (2021). Biomimetic 4D printed materials: A state-of-the-art review on concepts, opportunities, and challenges. Materials Today: Proceedings, 47, 3313–3319. Vates, U. K., Mishra, S., & Kanu, N. J. (2021). Biomimetic 4D printed materials: A state-of-the-art review on concepts, opportunities, and challenges. Materials Today: Proceedings, 47, 3313–3319.
17.
Zurück zum Zitat Bhushan, B. (2011). Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity. Beilstein Journal of Nanotechnology, 2(1), 66–84.CrossRef Bhushan, B. (2011). Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity. Beilstein Journal of Nanotechnology, 2(1), 66–84.CrossRef
18.
Zurück zum Zitat Barthlott, W., Mail, M., & Neinhuis, C. (2016). Superhydrophobic hierarchically structured surfaces in biology: Evolution, structural principles and biomimetic applications. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2073), 20160191.CrossRef Barthlott, W., Mail, M., & Neinhuis, C. (2016). Superhydrophobic hierarchically structured surfaces in biology: Evolution, structural principles and biomimetic applications. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2073), 20160191.CrossRef
19.
Zurück zum Zitat Wang, J., Wang, Z., Song, Z., Ren, L., Liu, Q., & Ren, L. (2019). Biomimetic shape-color double-responsive 4D printing. Advanced Materials Technologies, 4(9), 1900293.CrossRef Wang, J., Wang, Z., Song, Z., Ren, L., Liu, Q., & Ren, L. (2019). Biomimetic shape-color double-responsive 4D printing. Advanced Materials Technologies, 4(9), 1900293.CrossRef
20.
Zurück zum Zitat Khalid, M. Y., Arif, Z. U., & Ahmed, W. (2022). 4D printing: Technological and manufacturing renaissance. Macromolecular Materials and Engineering, 307(8), 2200003.CrossRef Khalid, M. Y., Arif, Z. U., & Ahmed, W. (2022). 4D printing: Technological and manufacturing renaissance. Macromolecular Materials and Engineering, 307(8), 2200003.CrossRef
22.
Zurück zum Zitat Hardin, J. O., Ober, T. J., Valentine, A. D., & Lewis, J. A. (2015). Microfluidic printheads for multimaterial 3D printing of viscoelastic inks. Advanced Materials, 27(21), 3279–3284.CrossRef Hardin, J. O., Ober, T. J., Valentine, A. D., & Lewis, J. A. (2015). Microfluidic printheads for multimaterial 3D printing of viscoelastic inks. Advanced Materials, 27(21), 3279–3284.CrossRef
23.
Zurück zum Zitat Ryan, K. R., Down, M. P., & Banks, C. E. (2021). Future of additive manufacturing: Overview of 4D and 3D printed smart and advanced materials and their applications. Chemical Engineering Journal, 403, 126162.CrossRef Ryan, K. R., Down, M. P., & Banks, C. E. (2021). Future of additive manufacturing: Overview of 4D and 3D printed smart and advanced materials and their applications. Chemical Engineering Journal, 403, 126162.CrossRef
24.
Zurück zum Zitat Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L., & Lewis, J. A. (2016). Biomimetic 4D printing. Nature Materials, 15(4), 413–418.CrossRef Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L., & Lewis, J. A. (2016). Biomimetic 4D printing. Nature Materials, 15(4), 413–418.CrossRef
25.
Zurück zum Zitat Han, I. K., Chung, T., Han, J., & Kim, Y. S. (2019). Nanocomposite hydrogel actuators hybridized with various dimensional nanomaterials for stimuli responsiveness enhancement. Nano Convergence, 6, 1–21.CrossRef Han, I. K., Chung, T., Han, J., & Kim, Y. S. (2019). Nanocomposite hydrogel actuators hybridized with various dimensional nanomaterials for stimuli responsiveness enhancement. Nano Convergence, 6, 1–21.CrossRef
26.
Zurück zum Zitat Jang, T. S., Jung, H. D., Pan, H. M., Han, W. T., Chen, S., & Song, J. (2018). 3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering. International Journal of Bioprinting, 4(1). Jang, T. S., Jung, H. D., Pan, H. M., Han, W. T., Chen, S., & Song, J. (2018). 3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering. International Journal of Bioprinting, 4(1).
27.
Zurück zum Zitat Taylor, J. M., Luan, H., Lewis, J. A., Rogers, J. A., Nuzzo, R. G., & Braun, P. V. (2022). Biomimetic and biologically compliant soft architectures via 3D and 4D assembly methods: A perspective. Advanced Materials, 34(16), 2108391.CrossRef Taylor, J. M., Luan, H., Lewis, J. A., Rogers, J. A., Nuzzo, R. G., & Braun, P. V. (2022). Biomimetic and biologically compliant soft architectures via 3D and 4D assembly methods: A perspective. Advanced Materials, 34(16), 2108391.CrossRef
28.
Zurück zum Zitat Advances in 4D printing: Materials and applications. Advanced Functional Materials, 29(2), 1805290. Advances in 4D printing: Materials and applications. Advanced Functional Materials, 29(2), 1805290.
29.
Zurück zum Zitat Grönquist, P., Panchadcharam, P., Wood, D., Menges, A., Rüggeberg, M., & Wittel, F. K. (2020). Computational analysis of hygromorphic self-shaping wood gridshell structures. Royal Society Open Science, 7(7), 192210.CrossRef Grönquist, P., Panchadcharam, P., Wood, D., Menges, A., Rüggeberg, M., & Wittel, F. K. (2020). Computational analysis of hygromorphic self-shaping wood gridshell structures. Royal Society Open Science, 7(7), 192210.CrossRef
30.
Zurück zum Zitat Sonatkar, J., Kandasubramanian, B., & Ismail, S. O. (2022). 4D printing: Pragmatic progression in biofabrication. European Polymer Journal, 169, 111128.CrossRef Sonatkar, J., Kandasubramanian, B., & Ismail, S. O. (2022). 4D printing: Pragmatic progression in biofabrication. European Polymer Journal, 169, 111128.CrossRef
31.
Zurück zum Zitat Mao, Y., Yu, K., Isakov, M. S., Wu, J., Dunn, M. L., & Jerry Qi, H. (2015). Sequential self-folding structures by 3D printed digital shape memory polymers. Scientific Reports, 5(1), 13616.CrossRef Mao, Y., Yu, K., Isakov, M. S., Wu, J., Dunn, M. L., & Jerry Qi, H. (2015). Sequential self-folding structures by 3D printed digital shape memory polymers. Scientific Reports, 5(1), 13616.CrossRef
32.
Zurück zum Zitat Lin, Q., Jia, W., Wu, H., Kueh, A. B., Wang, Y., Wang, K., & Cai, J. (2021). Wrapping deployment simulation analysis of leaf-inspired membrane structures. Aerospace, 8(8), 218.CrossRef Lin, Q., Jia, W., Wu, H., Kueh, A. B., Wang, Y., Wang, K., & Cai, J. (2021). Wrapping deployment simulation analysis of leaf-inspired membrane structures. Aerospace, 8(8), 218.CrossRef
33.
Zurück zum Zitat Alshahrani, H. A. (2021). Review of 4D printing materials and reinforced composites: Behaviors, applications and challenges. Journal of Science: Advanced Materials and Devices, 6(2), 167–185. Alshahrani, H. A. (2021). Review of 4D printing materials and reinforced composites: Behaviors, applications and challenges. Journal of Science: Advanced Materials and Devices, 6(2), 167–185.
34.
Zurück zum Zitat Behl, M., & Lendlein, A. (2007). Shape-memory polymers. Materials Today, 10(4), 20–28.CrossRef Behl, M., & Lendlein, A. (2007). Shape-memory polymers. Materials Today, 10(4), 20–28.CrossRef
35.
Zurück zum Zitat Xin, X., Liu, L., Liu, Y., & Leng, J. (2020). Origami-inspired self-deployment 4D printed honeycomb sandwich structure with large shape transformation. Smart Materials and Structures, 29(6), 065015.CrossRef Xin, X., Liu, L., Liu, Y., & Leng, J. (2020). Origami-inspired self-deployment 4D printed honeycomb sandwich structure with large shape transformation. Smart Materials and Structures, 29(6), 065015.CrossRef
37.
Zurück zum Zitat Wang, X., He, Y., Liu, Y., & Leng, J. (2022). Advances in shape memory polymers: Remote actuation, multi-stimuli control, 4D printing and prospective applications. Materials Science and Engineering: R: Reports, 151, 100702.CrossRef Wang, X., He, Y., Liu, Y., & Leng, J. (2022). Advances in shape memory polymers: Remote actuation, multi-stimuli control, 4D printing and prospective applications. Materials Science and Engineering: R: Reports, 151, 100702.CrossRef
38.
Zurück zum Zitat Joshi, S., Rawat, K., Karunakaran, C., Rajamohan, V., Mathew, A. T., Koziol, K., Thakur, V. K., & Balan, A. S. S. (2020). 4D printing of materials for the future: Opportunities and challenges. Applied Materials Today, 18, 100490.CrossRef Joshi, S., Rawat, K., Karunakaran, C., Rajamohan, V., Mathew, A. T., Koziol, K., Thakur, V. K., & Balan, A. S. S. (2020). 4D printing of materials for the future: Opportunities and challenges. Applied Materials Today, 18, 100490.CrossRef
39.
Zurück zum Zitat Liu, Z. Q., Qiu, H., Li, X., & Yang, S. L. (2017). Review of large spacecraft deployable membrane antenna structures. Chinese Journal of Mechanical Engineering, 30(6), 1447–1459.CrossRef Liu, Z. Q., Qiu, H., Li, X., & Yang, S. L. (2017). Review of large spacecraft deployable membrane antenna structures. Chinese Journal of Mechanical Engineering, 30(6), 1447–1459.CrossRef
40.
Zurück zum Zitat Kanaan, A. F., & Piedade, A. P. (2022). Electro-responsive polymer-based platforms for electrostimulation of cells. Materials Advances, 3(5), 2337–2353.CrossRef Kanaan, A. F., & Piedade, A. P. (2022). Electro-responsive polymer-based platforms for electrostimulation of cells. Materials Advances, 3(5), 2337–2353.CrossRef
41.
Zurück zum Zitat Piedade, A. P., & Pinho, A. C. (2022). 4D-printed stimuli-responsive hydrogels modeling and fabrication. In Smart materials in additive manufacturing (pp. 151–192). Elsevier. Piedade, A. P., & Pinho, A. C. (2022). 4D-printed stimuli-responsive hydrogels modeling and fabrication. In Smart materials in additive manufacturing (pp. 151–192). Elsevier.
42.
Zurück zum Zitat Pinho, A. C., & Piedade, A. P. (2023). Stimuli-responsive smart materials for additive manufacturing. Nanotechnology-Based Additive Manufacturing: Product Design, Properties and Applications, 1, 249–276.CrossRef Pinho, A. C., & Piedade, A. P. (2023). Stimuli-responsive smart materials for additive manufacturing. Nanotechnology-Based Additive Manufacturing: Product Design, Properties and Applications, 1, 249–276.CrossRef
43.
Zurück zum Zitat Green, S., Prainsack, B., & Sabatello, M. (2023). Precision medicine and the problem of structural injustice. Medicine, Health Care and Philosophy, 1–18. Green, S., Prainsack, B., & Sabatello, M. (2023). Precision medicine and the problem of structural injustice. Medicine, Health Care and Philosophy, 1–18.
44.
Zurück zum Zitat Whitesides, G. M. (2018). Soft robotics. Angewandte Chemie International Edition, 57(16), 4258–4273.CrossRef Whitesides, G. M. (2018). Soft robotics. Angewandte Chemie International Edition, 57(16), 4258–4273.CrossRef
45.
Zurück zum Zitat Paternò, L., & Lorenzon, L. (2023). Soft robotics in wearable and implantable medical applications: Translational challenges and future outlooks. Frontiers in Robotics and AI, 10, 1075634.CrossRef Paternò, L., & Lorenzon, L. (2023). Soft robotics in wearable and implantable medical applications: Translational challenges and future outlooks. Frontiers in Robotics and AI, 10, 1075634.CrossRef
46.
Zurück zum Zitat Ahmed, A., Arya, S., Gupta, V., Furukawa, H., & Khosla, A. (2021). 4D printing: Fundamentals, materials, applications and challenges. Polymer, 228, 123926.CrossRef Ahmed, A., Arya, S., Gupta, V., Furukawa, H., & Khosla, A. (2021). 4D printing: Fundamentals, materials, applications and challenges. Polymer, 228, 123926.CrossRef
47.
Zurück zum Zitat Demoly, F., Dunn, M. L., Wood, K. L., Qi, H. J., & Andre, J. C. (2021). The status, barriers, challenges, and future in design for 4D printing. Materials & Design, 212, 110193.CrossRef Demoly, F., Dunn, M. L., Wood, K. L., Qi, H. J., & Andre, J. C. (2021). The status, barriers, challenges, and future in design for 4D printing. Materials & Design, 212, 110193.CrossRef
48.
Zurück zum Zitat López, M., Rubio, R., Martín, S., Croxford, B., & Jackson, R. (2015). Active materials for adaptive architectural envelopes based on plant adaptation principles. Journal of Facade Design and Engineering, 3(1), 27–38.CrossRef López, M., Rubio, R., Martín, S., Croxford, B., & Jackson, R. (2015). Active materials for adaptive architectural envelopes based on plant adaptation principles. Journal of Facade Design and Engineering, 3(1), 27–38.CrossRef
49.
Zurück zum Zitat AL-Oqla, F. M., Hayajneh, M. T., & Nawafleh, N. (2023). Advanced synthetic and biobased composite materials in sustainable applications: A comprehensive review. Emergent Materials, 6, 1–18.CrossRef AL-Oqla, F. M., Hayajneh, M. T., & Nawafleh, N. (2023). Advanced synthetic and biobased composite materials in sustainable applications: A comprehensive review. Emergent Materials, 6, 1–18.CrossRef
50.
Zurück zum Zitat Zhang, Z., Liu, G., Li, Z., Zhang, W., & Meng, Q. (2023). Flexible tactile sensors with biomimetic microstructures: Mechanisms, fabrication, and applications. Advances in Colloid and Interface Science, 102988. Zhang, Z., Liu, G., Li, Z., Zhang, W., & Meng, Q. (2023). Flexible tactile sensors with biomimetic microstructures: Mechanisms, fabrication, and applications. Advances in Colloid and Interface Science, 102988.
51.
Zurück zum Zitat Ling, Y., Pang, W., Liu, J., Page, M., Xu, Y., Zhao, G., et al. (2022). Bioinspired elastomer composites with programmed mechanical and electrical anisotropies. Nature Communications, 13(1), 524.CrossRef Ling, Y., Pang, W., Liu, J., Page, M., Xu, Y., Zhao, G., et al. (2022). Bioinspired elastomer composites with programmed mechanical and electrical anisotropies. Nature Communications, 13(1), 524.CrossRef
52.
Zurück zum Zitat Jayawardena, I., Turunen, P., Garms, B. C., Rowan, A., Corrie, S., & Grøndahl, L. (2023). Evaluation of techniques used for visualisation of hydrogel morphology and determination of pore size distributions. Materials Advances, 4(2), 669–682.CrossRef Jayawardena, I., Turunen, P., Garms, B. C., Rowan, A., Corrie, S., & Grøndahl, L. (2023). Evaluation of techniques used for visualisation of hydrogel morphology and determination of pore size distributions. Materials Advances, 4(2), 669–682.CrossRef
53.
Zurück zum Zitat Yao, X., Chen, H., Qin, H., & Cong, H. P. (2023). Nanocomposite hydrogel actuators with ordered structures: From nanoscale control to macroscale deformations. Small. Methods, 2300414. Yao, X., Chen, H., Qin, H., & Cong, H. P. (2023). Nanocomposite hydrogel actuators with ordered structures: From nanoscale control to macroscale deformations. Small. Methods, 2300414.
54.
Zurück zum Zitat Borra, N. D., Neigapula, V. S. N., Sanivada, U. K., & Fangueiro, R. (2023). Tailoring the shape memory properties of silica nanoparticle infused photopolymer composites for 4D printing applications: A Taguchi analysis. European Polymer Journal, 194, 112174.CrossRef Borra, N. D., Neigapula, V. S. N., Sanivada, U. K., & Fangueiro, R. (2023). Tailoring the shape memory properties of silica nanoparticle infused photopolymer composites for 4D printing applications: A Taguchi analysis. European Polymer Journal, 194, 112174.CrossRef
55.
Zurück zum Zitat Zhao, W., Li, N., Liu, L., Leng, J., & Liu, Y. (2023). Mechanical behaviors and applications of shape memory polymer and its composites. Applied Physics Reviews, 10(1). Zhao, W., Li, N., Liu, L., Leng, J., & Liu, Y. (2023). Mechanical behaviors and applications of shape memory polymer and its composites. Applied Physics Reviews, 10(1).
56.
Zurück zum Zitat Žujović, M., Obradović, R., Rakonjac, I., & Milošević, J. (2022). 3D printing technologies in architectural design and construction: A systematic literature review. Buildings, 12(9), 1319.CrossRef Žujović, M., Obradović, R., Rakonjac, I., & Milošević, J. (2022). 3D printing technologies in architectural design and construction: A systematic literature review. Buildings, 12(9), 1319.CrossRef
57.
Zurück zum Zitat Fu, P., Li, H., Gong, J., Fan, Z., Smith, A. T., Shen, K., & Sun, L. (2022). 4D printing of polymers: Techniques, materials, and prospects. Progress in Polymer Science, 126, 101506.CrossRef Fu, P., Li, H., Gong, J., Fan, Z., Smith, A. T., Shen, K., & Sun, L. (2022). 4D printing of polymers: Techniques, materials, and prospects. Progress in Polymer Science, 126, 101506.CrossRef
58.
Zurück zum Zitat Smith, S. I. (2017). Superporous intelligent hydrogels for environmentally adaptive building skins. MRS Advances, 2, 2481–2488.CrossRef Smith, S. I. (2017). Superporous intelligent hydrogels for environmentally adaptive building skins. MRS Advances, 2, 2481–2488.CrossRef
59.
Zurück zum Zitat Fischer, S. (2015). Realistic Fe simulation of foldcore sandwich structures. International Journal of Mechanical and Materials Engineering, 10(1), 1–11.CrossRef Fischer, S. (2015). Realistic Fe simulation of foldcore sandwich structures. International Journal of Mechanical and Materials Engineering, 10(1), 1–11.CrossRef
60.
Zurück zum Zitat Zhang, Z., Demir, K. G., & Gu, G. X. (2019). Developments in 4D-printing: A review on current smart materials, technologies, and applications. International Journal of Smart and Nano Materials, 10(3), 205–224.CrossRef Zhang, Z., Demir, K. G., & Gu, G. X. (2019). Developments in 4D-printing: A review on current smart materials, technologies, and applications. International Journal of Smart and Nano Materials, 10(3), 205–224.CrossRef
61.
Zurück zum Zitat Zhang, W., Ge, Z., & Li, D. (2023). Design and research of form controlled planar folding mechanism based on 4D printing technology. Chinese Journal of Mechanical Engineering, 36(1), 1–13.CrossRef Zhang, W., Ge, Z., & Li, D. (2023). Design and research of form controlled planar folding mechanism based on 4D printing technology. Chinese Journal of Mechanical Engineering, 36(1), 1–13.CrossRef
62.
Zurück zum Zitat Koch, S. M., Grönquist, P., Monney, C., Burgert, I., & Frangi, A. (2022). Densified delignified wood as bio-based fiber reinforcement for stiffness increase of timber structures. Composites Part A: Applied Science and Manufacturing, 163, 107220.CrossRef Koch, S. M., Grönquist, P., Monney, C., Burgert, I., & Frangi, A. (2022). Densified delignified wood as bio-based fiber reinforcement for stiffness increase of timber structures. Composites Part A: Applied Science and Manufacturing, 163, 107220.CrossRef
63.
Zurück zum Zitat Pittas, P. Exploring self-repairing materials and their application towards sustainable design. Obtenido de: https://unswcode. org/wpcontent/uploads/2018/12/Exploring_Self-Repairing_Materials_and_their_Applications_Towards_Sustainable_Design. pdf Pittas, P. Exploring self-repairing materials and their application towards sustainable design. Obtenido de: https://​unswcode.​ org/wpcontent/uploads/2018/12/Exploring_Self-Repairing_Materials_and_their_Applications_Towards_Sustainable_Design. pdf
64.
Zurück zum Zitat Mallakpour, S., Tabesh, F., & Hussain, C. M. (2021). 3D and 4D printing: From innovation to evolution. Advances in Colloid and Interface Science, 294, 102482.CrossRef Mallakpour, S., Tabesh, F., & Hussain, C. M. (2021). 3D and 4D printing: From innovation to evolution. Advances in Colloid and Interface Science, 294, 102482.CrossRef
65.
Zurück zum Zitat Joharji, L., Mishra, R. B., Alam, F., Tytov, S., Al-Modaf, F., & El-Atab, N. (2022). 4D printing: A detailed review of materials, techniques, and applications. Microelectronic Engineering, 111874. Joharji, L., Mishra, R. B., Alam, F., Tytov, S., Al-Modaf, F., & El-Atab, N. (2022). 4D printing: A detailed review of materials, techniques, and applications. Microelectronic Engineering, 111874.
66.
Zurück zum Zitat Vatanparast, S., Boschetto, A., Bottini, L., & Gaudenzi, P. (2023). New trends in 4D printing: A critical review. Applied Sciences, 13(13), 7744.CrossRef Vatanparast, S., Boschetto, A., Bottini, L., & Gaudenzi, P. (2023). New trends in 4D printing: A critical review. Applied Sciences, 13(13), 7744.CrossRef
Metadaten
Titel
Biomimetics and 4D Printing: A Synergy for the Development of Innovative Materials
verfasst von
Santina Di Salvo
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-51311-4_7