Skip to main content
Erschienen in: Journal of Materials Science 30/2020

27.07.2020 | Energy materials

Biomineralized zircon-coated PVDF nanofiber separator for enhancing thermo- and electro-chemical properties of lithium ion batteries

verfasst von: Shaojin Jia, Jiating Long, Jiwei Li, Shaohua Yang, Kaili Huang, Na Yang, Yuhao Liang, Jun Xiao

Erschienen in: Journal of Materials Science | Ausgabe 30/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As one of the components of the lithium ion batteries (LIBs), the separator plays a vital part in the safety and electrochemical performance. In this work, a ZrO2-ceramic-coated polyvinylidene fluoride (PVDF) nanofibrous separator for LIBs was successfully prepared by electrospinning, subsequent dopamine hydrophilic modification and biomimetic mineralization process. These preparation processes were environmentally friendly and simple. The ZrO2-ceramic coating endows the separator with outstanding electrolyte wettability and thermal stability. To be specific, the separator exhibits higher ionic conductivity (2.261 mS cm−1), high porosity (85.1%) and favorable electrolyte wettability (352%), and lower interfacial impedance (220 Ω). Compared with commercial polyolefin separator and PVDF nanofibrous separator, the ZrO2-ceramic-coated PVDF nanofibrous separator exhibits excellent rate performance and well cyclic stability. Most importantly the ZrO2–PDA/PEI–PVDF separator can still maintain a complete structure even at a high temperature of 300 °C. Compared with commercial separators, it greatly improves the safety of lithium ion batteries at high temperature. Therefore, this separator has far-reaching prospects for improving lithium ion safety and cycle stability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Rodrigues M-TF, BabuG Gullapalli H, Kalaga K, Sayed FN, Kato K, Joyner J, Ajayan PM (2017) A materials perspective on Li-ion batteries at extreme temperatures. Nat Energy 2:17108 Rodrigues M-TF, BabuG Gullapalli H, Kalaga K, Sayed FN, Kato K, Joyner J, Ajayan PM (2017) A materials perspective on Li-ion batteries at extreme temperatures. Nat Energy 2:17108
2.
Zurück zum Zitat Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4(9):3287–3295 Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4(9):3287–3295
3.
Zurück zum Zitat Kim T, Park J, Chang SK, Choi S, Ji HR, Song HK (2012) The current move of lithium ion batteries towards the next phase. Adv Energy Mater 2:860–872 Kim T, Park J, Chang SK, Choi S, Ji HR, Song HK (2012) The current move of lithium ion batteries towards the next phase. Adv Energy Mater 2:860–872
4.
Zurück zum Zitat Lu L, Han X, Li J, Ouyang M (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288 Lu L, Han X, Li J, Ouyang M (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288
5.
Zurück zum Zitat Balakrishnan PG, Ramesh R, Kumar TP (2006) Safety mechanisms in lithium-ion batteries. J Power Sources 155:401–414 Balakrishnan PG, Ramesh R, Kumar TP (2006) Safety mechanisms in lithium-ion batteries. J Power Sources 155:401–414
6.
Zurück zum Zitat Jansen AN, Kahaian AJ, Kepler KD, NelsonPA Amine K, Dees DW, Vissers DR, Thackeray MM (1999) Development of a high-power lithium-ion battery. J Power Sources 81–82:902–905 Jansen AN, Kahaian AJ, Kepler KD, NelsonPA Amine K, Dees DW, Vissers DR, Thackeray MM (1999) Development of a high-power lithium-ion battery. J Power Sources 81–82:902–905
7.
Zurück zum Zitat Lee HM, Toprakci O, Fu K, Zhang X (2014) A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci 7:3857–3886 Lee HM, Toprakci O, Fu K, Zhang X (2014) A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci 7:3857–3886
8.
Zurück zum Zitat Arora P, Zhang ZM (2004) Battery separators. Chem Rev 104:4419–4462 Arora P, Zhang ZM (2004) Battery separators. Chem Rev 104:4419–4462
9.
Zurück zum Zitat Huang X, Hitt J (2013) Lithium-ion battery separators: development and performance characterization of a composite membrane. J Membr Sci 425–426:163–168 Huang X, Hitt J (2013) Lithium-ion battery separators: development and performance characterization of a composite membrane. J Membr Sci 425–426:163–168
10.
Zurück zum Zitat Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164:351–364 Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164:351–364
11.
Zurück zum Zitat Feng G, Li Z, Mi L (2018) Polypropylene/hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries. J Power Sources 376:177–183 Feng G, Li Z, Mi L (2018) Polypropylene/hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries. J Power Sources 376:177–183
12.
Zurück zum Zitat Chen W, Liu Y, Ma Y, Yang W (2015) Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly (vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate). J Power Sources 273:1127–1135 Chen W, Liu Y, Ma Y, Yang W (2015) Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly (vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate). J Power Sources 273:1127–1135
13.
Zurück zum Zitat Shin W-K, Kim D-W (2013) High performance ceramic-coated separators prepared with lithium ion-containing SiO2 particles for lithium-ion batteries. J Power Sources 226:54–60 Shin W-K, Kim D-W (2013) High performance ceramic-coated separators prepared with lithium ion-containing SiO2 particles for lithium-ion batteries. J Power Sources 226:54–60
14.
Zurück zum Zitat Shi JL, Xia Y, Yuan ZZ, Hu H, Li XF, Zhang HM, Liu ZP (2015) Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery. Sci Rep 5:8255 Shi JL, Xia Y, Yuan ZZ, Hu H, Li XF, Zhang HM, Liu ZP (2015) Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery. Sci Rep 5:8255
15.
Zurück zum Zitat Zhai Y, Xiao K, Yu J, Ding B (2016) Closely packed x-poly(ethylene glycol diacrylate) coated polyetherimide/poly(vinylidene fluoride) fiber separators for lithium ion batteries with enhanced thermostability and improved electrolyte wettability. J Power Sources 325:292–300 Zhai Y, Xiao K, Yu J, Ding B (2016) Closely packed x-poly(ethylene glycol diacrylate) coated polyetherimide/poly(vinylidene fluoride) fiber separators for lithium ion batteries with enhanced thermostability and improved electrolyte wettability. J Power Sources 325:292–300
16.
Zurück zum Zitat Ye W, Zhu J, Liao X, Jiang S, Li Y, Fang H, Hou H (2015) Hierarchical three-dimensional micro/nano-architecture of polyaniline nanowires wrapped-on polyimide nanofibers for high performance lithium-ion battery separators. J Power Sources 299:417–424 Ye W, Zhu J, Liao X, Jiang S, Li Y, Fang H, Hou H (2015) Hierarchical three-dimensional micro/nano-architecture of polyaniline nanowires wrapped-on polyimide nanofibers for high performance lithium-ion battery separators. J Power Sources 299:417–424
17.
Zurück zum Zitat Lee J, Park I, Lee H, Shin D (2012) Effects of embossing structure on the performance of intermediate-temperature solid oxide fuel cells with gadolinium-doped ceria electrolyte. J Power Sources 212:35–42 Lee J, Park I, Lee H, Shin D (2012) Effects of embossing structure on the performance of intermediate-temperature solid oxide fuel cells with gadolinium-doped ceria electrolyte. J Power Sources 212:35–42
18.
Zurück zum Zitat Ko Y, Yoo H, Kim J (2014) Curable polymeric binder–ceramic composite-coated superior heat-resistant polyethylene separator for lithium ion batteries. Rsc Adv 4:19229–19233 Ko Y, Yoo H, Kim J (2014) Curable polymeric binder–ceramic composite-coated superior heat-resistant polyethylene separator for lithium ion batteries. Rsc Adv 4:19229–19233
19.
Zurück zum Zitat Lee JY, Yong ML, Bhattacharya B, Nho YC, Park JK (2009) Separator grafted with siloxane by electron beam irradiation for lithium secondary batteries. Electrochim Acta 54:4312–4315 Lee JY, Yong ML, Bhattacharya B, Nho YC, Park JK (2009) Separator grafted with siloxane by electron beam irradiation for lithium secondary batteries. Electrochim Acta 54:4312–4315
20.
Zurück zum Zitat Yang HC, Hou J, Chen V, Xu ZK (2016) Surface and interface engineering for organic–inorganic composite membranes. J Mater Chem A 4(25):9716–9729 Yang HC, Hou J, Chen V, Xu ZK (2016) Surface and interface engineering for organic–inorganic composite membranes. J Mater Chem A 4(25):9716–9729
21.
Zurück zum Zitat Shi C, Dai J, Shen X et al (2016) A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2O3, particles for lithium-ion batteries. J Membr Sci 517:91–99 Shi C, Dai J, Shen X et al (2016) A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2O3, particles for lithium-ion batteries. J Membr Sci 517:91–99
22.
Zurück zum Zitat Yang P, Zhang P, Shi C, Chen L, Dai J (2015) The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries. J Membr Sci 474:148–155 Yang P, Zhang P, Shi C, Chen L, Dai J (2015) The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries. J Membr Sci 474:148–155
23.
Zurück zum Zitat Choi SW, Jo SM, Lee WS, Kim Y (2010) An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications. Adv Mater 15:2027–2032 Choi SW, Jo SM, Lee WS, Kim Y (2010) An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications. Adv Mater 15:2027–2032
24.
Zurück zum Zitat Wu D, Deng L, Sun Y, The KS, Shi C (2017) A high-safety PVDF/Al2O3 composite separator for Li-ion batteries via tip-induced electrospinning and dip-coating. Rsc Adv 7:24410–24416 Wu D, Deng L, Sun Y, The KS, Shi C (2017) A high-safety PVDF/Al2O3 composite separator for Li-ion batteries via tip-induced electrospinning and dip-coating. Rsc Adv 7:24410–24416
25.
Zurück zum Zitat Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430 Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430
26.
Zurück zum Zitat Yang HC, Luo J, Lv Y et al (2015) Surface engineering of polymer membranes via mussel-inspired chemistry. J Membr Sci 483:42–59 Yang HC, Luo J, Lv Y et al (2015) Surface engineering of polymer membranes via mussel-inspired chemistry. J Membr Sci 483:42–59
27.
Zurück zum Zitat Lee H, Rho J (2009) Messersmith, facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 21:431–434 Lee H, Rho J (2009) Messersmith, facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 21:431–434
28.
Zurück zum Zitat Lee Y, Ryou MH, Seo M, Choi JW, Yong ML (2013) Effect of polydopamine surface coating on polyethylene separators as a function of their porosity for high-power Li-ion batteries. Electrochim Acta 113:433–438 Lee Y, Ryou MH, Seo M, Choi JW, Yong ML (2013) Effect of polydopamine surface coating on polyethylene separators as a function of their porosity for high-power Li-ion batteries. Electrochim Acta 113:433–438
29.
Zurück zum Zitat Ryou MH, Lee YM, Park JK, Choi JW (2011) Mussel-inspired polydopamine treated polyethylene separators for high-power li-ion batteries. Adv Mater 23:3066–3070 Ryou MH, Lee YM, Park JK, Choi JW (2011) Mussel-inspired polydopamine treated polyethylene separators for high-power li-ion batteries. Adv Mater 23:3066–3070
30.
Zurück zum Zitat Mi Y, Wang J, Yang Z, Wang Z, Wang H (2014) A simple one-step solution deposition process for constructing high-performance amorphous zirconium oxide thin film. Rsc Adv 4:6060–6067 Mi Y, Wang J, Yang Z, Wang Z, Wang H (2014) A simple one-step solution deposition process for constructing high-performance amorphous zirconium oxide thin film. Rsc Adv 4:6060–6067
31.
Zurück zum Zitat Yang HC, Pi JK, Liao KJ, Huang H, Wu QY (2014) Silica-decorated polypropylene microfiltration membranes with a mussel-inspired intermediate layer for oil-in-water emulsion separation. ACS Appl Mater Interfaces 6:12566–12572 Yang HC, Pi JK, Liao KJ, Huang H, Wu QY (2014) Silica-decorated polypropylene microfiltration membranes with a mussel-inspired intermediate layer for oil-in-water emulsion separation. ACS Appl Mater Interfaces 6:12566–12572
32.
Zurück zum Zitat Kang SM, Ryou MH, Choi JW, Lee H (2012) Mussel- and diatom-inspired silica coating on separators yields improved power and safety in li-ion batteries. Chem Mater 24:3481–3485 Kang SM, Ryou MH, Choi JW, Lee H (2012) Mussel- and diatom-inspired silica coating on separators yields improved power and safety in li-ion batteries. Chem Mater 24:3481–3485
35.
Zurück zum Zitat Shi C, Dai JH, Huang SH, Li C, Shen X, Zhang P, Wu DZ, Sun DH, Zhao JB (2016) A simple method to prepare a polydopamine modified core-shell structure composite separator for application in high-safety lithium ion batteries. J Membr Sci 518:168–177 Shi C, Dai JH, Huang SH, Li C, Shen X, Zhang P, Wu DZ, Sun DH, Zhao JB (2016) A simple method to prepare a polydopamine modified core-shell structure composite separator for application in high-safety lithium ion batteries. J Membr Sci 518:168–177
36.
Zurück zum Zitat Mikhailov MM, Vlasov VA (2016) Effect of of SiO2 nanoparticles sizes on the optical properties and radiation resistance of powder mixtures ZrO2 with micron sizes. Radiat Meas 91:15–20 Mikhailov MM, Vlasov VA (2016) Effect of of SiO2 nanoparticles sizes on the optical properties and radiation resistance of powder mixtures ZrO2 with micron sizes. Radiat Meas 91:15–20
37.
Zurück zum Zitat Xie Y, Zou H, Xiang H, Xia R, Liang D, Shi P, Dai S, Wang H (2016) Enhancement on the wettability of lithium battery separator toward nonaqueous electrolytes. J Membr Sci 503:25–30 Xie Y, Zou H, Xiang H, Xia R, Liang D, Shi P, Dai S, Wang H (2016) Enhancement on the wettability of lithium battery separator toward nonaqueous electrolytes. J Membr Sci 503:25–30
38.
Zurück zum Zitat Jiang X, Zhu X, Ai X, Yang H, Cao Y (2017) Novel ceramic-grafted separator with highly thermal stability for safe lithium-ion batteries. ACS Appl Mater Interfaces 9:25970–25975 Jiang X, Zhu X, Ai X, Yang H, Cao Y (2017) Novel ceramic-grafted separator with highly thermal stability for safe lithium-ion batteries. ACS Appl Mater Interfaces 9:25970–25975
39.
Zurück zum Zitat Esho I, Shah K, Jain A (2018) Measurements and modeling to determine the critical temperature for preventing thermal runaway in Li-ion cells. Appl Therm Eng 145:287–294 Esho I, Shah K, Jain A (2018) Measurements and modeling to determine the critical temperature for preventing thermal runaway in Li-ion cells. Appl Therm Eng 145:287–294
40.
Zurück zum Zitat Zhang Z, Yuan W, Li L (2018) Enhanced wettability and thermal stability of nano-SiO2/poly(vinyl alcohol)-coated polypropylene composite separators for lithium-ion batteries. Particuology 37:91–98 Zhang Z, Yuan W, Li L (2018) Enhanced wettability and thermal stability of nano-SiO2/poly(vinyl alcohol)-coated polypropylene composite separators for lithium-ion batteries. Particuology 37:91–98
41.
Zurück zum Zitat Zhai Y, Xiao K, Yu J et al (2015) Thermostable and nonflammable silica–polyetherimide–poly-urethane nanofibrous separators for high power lithium ion batteries. J Mater Chem A 3:10551–10558 Zhai Y, Xiao K, Yu J et al (2015) Thermostable and nonflammable silica–polyetherimide–poly-urethane nanofibrous separators for high power lithium ion batteries. J Mater Chem A 3:10551–10558
42.
Zurück zum Zitat Zhan XL, Zhang JW, Liu MZ, Lu JG, Zhang QH, Chen FQ (2019) Advanced polymer electrolyte with enhanced electrochemical performance for lithium-ion batteries: effect of nitrile-functionalized ionic liquid. ACS Appl Energy Mater 2:1685–1694 Zhan XL, Zhang JW, Liu MZ, Lu JG, Zhang QH, Chen FQ (2019) Advanced polymer electrolyte with enhanced electrochemical performance for lithium-ion batteries: effect of nitrile-functionalized ionic liquid. ACS Appl Energy Mater 2:1685–1694
43.
Zurück zum Zitat Zhang W, Xiang YK, Jamil MI, Lu JG, Zhang QH, Zhan XL, Chen FQ (2018) Polymers/zeolite nanocomposite membranes with enhanced thermal and electrochemical performances for lithium-ion batteries. J Membr Sci 564:753–761 Zhang W, Xiang YK, Jamil MI, Lu JG, Zhang QH, Zhan XL, Chen FQ (2018) Polymers/zeolite nanocomposite membranes with enhanced thermal and electrochemical performances for lithium-ion batteries. J Membr Sci 564:753–761
44.
Zurück zum Zitat Ren CS, Liu MZ, Zhang JW, Zhang QH, Zhan XL, Chen FQ (2018) Solid-state singleion conducting comblike siloxane copolymer electrolyte with improvedconductivity and electrochemical window for lithium batteries. J Appl Polym Sci 135:9 Ren CS, Liu MZ, Zhang JW, Zhang QH, Zhan XL, Chen FQ (2018) Solid-state singleion conducting comblike siloxane copolymer electrolyte with improvedconductivity and electrochemical window for lithium batteries. J Appl Polym Sci 135:9
45.
Zurück zum Zitat Wang J, Hu Z, Yin X, Li Y, Huo H, Zhou J, Li L (2015) Alumina/phenolphthalein polyetherketone ceramic composite polypropylene separator for lithium ion power batteries. Electrochim Acta 159:61–65 Wang J, Hu Z, Yin X, Li Y, Huo H, Zhou J, Li L (2015) Alumina/phenolphthalein polyetherketone ceramic composite polypropylene separator for lithium ion power batteries. Electrochim Acta 159:61–65
Metadaten
Titel
Biomineralized zircon-coated PVDF nanofiber separator for enhancing thermo- and electro-chemical properties of lithium ion batteries
verfasst von
Shaojin Jia
Jiating Long
Jiwei Li
Shaohua Yang
Kaili Huang
Na Yang
Yuhao Liang
Jun Xiao
Publikationsdatum
27.07.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 30/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-05051-1

Weitere Artikel der Ausgabe 30/2020

Journal of Materials Science 30/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.