Skip to main content
Erschienen in: Mitigation and Adaptation Strategies for Global Change 6/2020

24.07.2020

Biophysical and socioeconomic factors influencing soil carbon stocks: a global assessment

verfasst von: Sandra Duarte-Guardia, Pablo Peri, Wulf Amelung, Evert Thomas, Nils Borchard, German Baldi, Annette Cowie, Brenton Ladd

Erschienen in: Mitigation and Adaptation Strategies for Global Change | Ausgabe 6/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Soil is the most important terrestrial carbon (C) reservoir but is greatly impacted by land use change (LUC). Previous analyses of LUC impacts on soil C have focused on biophysical variables, leaving aside the influence of socioeconomics. The aim of our study was to determine global soil organic carbon (SOC) change patterns after LUC and to assess the impacts of both biophysical and socioeconomic factors that influence stocks of SOC after LUC simultaneously. This was done at a global scale using 817 sites from 99 peer-reviewed publications. We performed separate analyses for cases in which there were gains and losses of SOC. The best predictors of SOC stock changes were the type of LUC and predictors related to sampling depth, climate, biome, soil order, relief, geology, years since LUC, and primary productivity. However, also, socioeconomic variables such as indices of poverty, population growth, and levels of corruption were important. They explained 33% of the variability in SOC on their own and helped improve model accuracy from 42 to 53% when considered in combination with biophysical variables. SOC losses were highly correlated to the type of LUC and social variables, while SOC gains correlated most strongly with years since LUC and the biophysical variables. The analyses confirm that one of the biggest drivers of SOC loss is conversion to agroindustrial scale cropping, whereas with regard to the recuperation of SOC after LUC, the factor “time since conversion” emerged as the most important predictive variable, which must be better integrated in respective policy expectations. We conclude that policies should more than ever incentivize holistic approaches that prevent additional loss of native SOC, while at the same time promoting sustainable intensification of existing agricultural regions. Finally future investments on LUC to regain SOC should be aligned with efforts to alleviate poverty and corruption for their potential to achieve mutual gains in soil fertility and socio-economic parameters.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Amundson R (2001) The carbon budget in soils. Annu Rev Earth Planet 29:535–562CrossRef Amundson R (2001) The carbon budget in soils. Annu Rev Earth Planet 29:535–562CrossRef
Zurück zum Zitat Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163CrossRef Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163CrossRef
Zurück zum Zitat Berkes F, Folke C (1998) Linking social and ecological systems for resilience and sustainability. In: Linking social and ecological systems Berkes F, Folke C (1998) Linking social and ecological systems for resilience and sustainability. In: Linking social and ecological systems
Zurück zum Zitat Chaudhry IS, ur Rahman S (2009) The impact of gender inequality in education on rural poverty in Pakistan: an empirical analysis. Eur J Econ Finance Adm Sci 15:174–188 Chaudhry IS, ur Rahman S (2009) The impact of gender inequality in education on rural poverty in Pakistan: an empirical analysis. Eur J Econ Finance Adm Sci 15:174–188
Zurück zum Zitat Chen S, Wang W, Xu W, Wang Y, Wan H, Chen D, Tang Z, Tang X, Zhou G, Xie Z, Zhou D, Shangguan Z, Huang J, He JS, Wang Y, Sheng J, Tang L, Li X, Dong M, Wu Y, Wang Q, Wang Z, Wu J, Chapin FS III, Bai Y (2018) Plant diversity enhances productivity and soil carbon storage. Proc Natl Acad Sci U S A 115:4027–4032. https://doi.org/10.1073/pnas.1700298114CrossRef Chen S, Wang W, Xu W, Wang Y, Wan H, Chen D, Tang Z, Tang X, Zhou G, Xie Z, Zhou D, Shangguan Z, Huang J, He JS, Wang Y, Sheng J, Tang L, Li X, Dong M, Wu Y, Wang Q, Wang Z, Wu J, Chapin FS III, Bai Y (2018) Plant diversity enhances productivity and soil carbon storage. Proc Natl Acad Sci U S A 115:4027–4032. https://​doi.​org/​10.​1073/​pnas.​1700298114CrossRef
Zurück zum Zitat Deng L, Zhu G, Tang Z, Shangguan Z (2016) Global patterns of the effects of land-use changes on soil carbon stocks. Glob Ecol Conserv 5:127–138CrossRef Deng L, Zhu G, Tang Z, Shangguan Z (2016) Global patterns of the effects of land-use changes on soil carbon stocks. Glob Ecol Conserv 5:127–138CrossRef
Zurück zum Zitat Dokuchaev V (1879) Mapping the Russian soils. Imp Univ St Petersbg Dokuchaev V (1879) Mapping the Russian soils. Imp Univ St Petersbg
Zurück zum Zitat Duarte-Guardia S, Peri PL, Amelung W, Sheil D, Laffan SW, Borchard N, Bird MI, Dieleman W, Pepper DA, Zutta B, Jobbagy E, Silva LCR, Bonser SP, Berhongaray G, Piñeiro G, Martinez MJ, Cowie AL, Ladd B (2019) Better estimates of soil carbon from geographical data: a revised global approach. Mitig Adapt Strateg Glob Chang 24:355–372. https://doi.org/10.1007/s11027-018-9815-yCrossRef Duarte-Guardia S, Peri PL, Amelung W, Sheil D, Laffan SW, Borchard N, Bird MI, Dieleman W, Pepper DA, Zutta B, Jobbagy E, Silva LCR, Bonser SP, Berhongaray G, Piñeiro G, Martinez MJ, Cowie AL, Ladd B (2019) Better estimates of soil carbon from geographical data: a revised global approach. Mitig Adapt Strateg Glob Chang 24:355–372. https://​doi.​org/​10.​1007/​s11027-018-9815-yCrossRef
Zurück zum Zitat FAO (2015) Status of the World’s Soil Resources FAO (2015) Status of the World’s Soil Resources
Zurück zum Zitat FAO (2019) Measuring and modelling soil carbon stocks and stock changes in livestock production systems FAO (2019) Measuring and modelling soil carbon stocks and stock changes in livestock production systems
Zurück zum Zitat Fisher MJ, Rao I, Ayarza MA et al (1994) Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature 371:236–238CrossRef Fisher MJ, Rao I, Ayarza MA et al (1994) Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature 371:236–238CrossRef
Zurück zum Zitat Friedlingsten P, Jones MW, O’Sullivan M et al (2019) Global carbon budget 2019. Earth Syst Sci Data 11:1783–1838CrossRef Friedlingsten P, Jones MW, O’Sullivan M et al (2019) Global carbon budget 2019. Earth Syst Sci Data 11:1783–1838CrossRef
Zurück zum Zitat Giardina CP, Hancock J, Lilleskov E, Loya W (2006) The response of belowground carbon allocation in forests to global change Giardina CP, Hancock J, Lilleskov E, Loya W (2006) The response of belowground carbon allocation in forests to global change
Zurück zum Zitat Hengl T, De Jesus JM, Heuvelink GBM, et al (2017) SoilGrids250m: global gridded soil information based on machine learning Hengl T, De Jesus JM, Heuvelink GBM, et al (2017) SoilGrids250m: global gridded soil information based on machine learning
Zurück zum Zitat Hothorn T, Hornik K, Strobl C, Zeileis A (2008) Party: a Laboratory for recursive part(y)itioning: R package. v 1.3-1. R Packag version 09-0, URL http//CRAN R-project org Hothorn T, Hornik K, Strobl C, Zeileis A (2008) Party: a Laboratory for recursive part(y)itioning: R package. v 1.3-1. R Packag version 09-0, URL http//CRAN R-project org
Zurück zum Zitat IPBES (2018) Summary for policymakers of the thematic assessment report on land degradation and restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Preliminary guide regarding diverse conceptualization of multiple values of nature and its benefits, including biodiversity and ecosystem functions and services (deliverable 3). doi: https://doi.org/10.1016/0025-326x(95)90325-6 IPBES (2018) Summary for policymakers of the thematic assessment report on land degradation and restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Preliminary guide regarding diverse conceptualization of multiple values of nature and its benefits, including biodiversity and ecosystem functions and services (deliverable 3). doi: https://​doi.​org/​10.​1016/​0025-326x(95)90325-6
Zurück zum Zitat IPCC (1996) Revised 1996 IPCC guidelines for national greenhouse gas inventories. Oceania IPCC (1996) Revised 1996 IPCC guidelines for national greenhouse gas inventories. Oceania
Zurück zum Zitat Jenny H (1941) Factors of soil formation. A system of quantitative pedology, Soil Science. Dover Publications, New York Jenny H (1941) Factors of soil formation. A system of quantitative pedology, Soil Science. Dover Publications, New York
Zurück zum Zitat Kirschbaum MUF (2000) Will changes in soil organic carbon act as a positive or. Biogeochemistry 48:21–51CrossRef Kirschbaum MUF (2000) Will changes in soil organic carbon act as a positive or. Biogeochemistry 48:21–51CrossRef
Zurück zum Zitat Kögel-Knabner I, Amelung W (2014) Dynamics, chemistry, and preservation of organic matter in soils Kögel-Knabner I, Amelung W (2014) Dynamics, chemistry, and preservation of organic matter in soils
Zurück zum Zitat Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science (80-) 304:1623–1627CrossRef Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science (80-) 304:1623–1627CrossRef
Zurück zum Zitat Linstädter A, Kuhn A, Naumann C, Rasch S, Sandhage-Hofmann A, Amelung W, Jordaan J, du Preez CC, Bollig M (2016) Assessing the resilience of a real-world social-ecological system: lessons from a multidisciplinary evaluation of a south African pastoral system. Ecol Soc 21. doi: https://doi.org/10.5751/ES-08737-210335 Linstädter A, Kuhn A, Naumann C, Rasch S, Sandhage-Hofmann A, Amelung W, Jordaan J, du Preez CC, Bollig M (2016) Assessing the resilience of a real-world social-ecological system: lessons from a multidisciplinary evaluation of a south African pastoral system. Ecol Soc 21. doi: https://​doi.​org/​10.​5751/​ES-08737-210335
Zurück zum Zitat Luo Z, Feng W, Luo Y, Baldock J, Wang E (2017) Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Glob Chang Biol 23:4430–4439CrossRef Luo Z, Feng W, Luo Y, Baldock J, Wang E (2017) Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Glob Chang Biol 23:4430–4439CrossRef
Zurück zum Zitat Minasny B, Malone BP, McBratney A et al (2017) Soil carbon 4 per mille. Geoderma 292:59–86CrossRef Minasny B, Malone BP, McBratney A et al (2017) Soil carbon 4 per mille. Geoderma 292:59–86CrossRef
Zurück zum Zitat Nordhaus WD, Chen X (2016) Global gridded geographically based economic data (G-Econ), version 4. Palisades, NY NASA Socioecon. Data Appl. Cent Nordhaus WD, Chen X (2016) Global gridded geographically based economic data (G-Econ), version 4. Palisades, NY NASA Socioecon. Data Appl. Cent
Zurück zum Zitat Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manag 168:241–257CrossRef Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manag 168:241–257CrossRef
Zurück zum Zitat Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRef Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRef
Zurück zum Zitat Rstudio Team (2016) RStudio: integrated development for R. RStudio, Inc., Boston MA. RStudio Rstudio Team (2016) RStudio: integrated development for R. RStudio, Inc., Boston MA. RStudio
Zurück zum Zitat Trabucco A, Zomer RJ (2009) Global potential evapo-transpiration (Global-PET) and global aridity index (Global-Aridity) geo-database. CGIAR Consort Spat Inf Trabucco A, Zomer RJ (2009) Global potential evapo-transpiration (Global-PET) and global aridity index (Global-Aridity) geo-database. CGIAR Consort Spat Inf
Zurück zum Zitat Trabucco A, Zomer RJ (2010) Global soil water balance geospatial database. CGIAR Consort Spat Inf Trabucco A, Zomer RJ (2010) Global soil water balance geospatial database. CGIAR Consort Spat Inf
Zurück zum Zitat Tsiafouli MA, Thébault E, Sgardelis SP, de Ruiter PC, van der Putten WH, Birkhofer K, Hemerik L, de Vries FT, Bardgett RD, Brady MV, Bjornlund L, Jørgensen HB, Christensen S, Hertefeldt TD’, Hotes S, Gera Hol WH, Frouz J, Liiri M, Mortimer SR, Setälä H, Tzanopoulos J, Uteseny K, Pižl V, Stary J, Wolters V, Hedlund K (2015) Intensive agriculture reduces soil biodiversity across Europe. Glob Chang Biol 21:973–985. https://doi.org/10.1111/gcb.12752CrossRef Tsiafouli MA, Thébault E, Sgardelis SP, de Ruiter PC, van der Putten WH, Birkhofer K, Hemerik L, de Vries FT, Bardgett RD, Brady MV, Bjornlund L, Jørgensen HB, Christensen S, Hertefeldt TD’, Hotes S, Gera Hol WH, Frouz J, Liiri M, Mortimer SR, Setälä H, Tzanopoulos J, Uteseny K, Pižl V, Stary J, Wolters V, Hedlund K (2015) Intensive agriculture reduces soil biodiversity across Europe. Glob Chang Biol 21:973–985. https://​doi.​org/​10.​1111/​gcb.​12752CrossRef
Zurück zum Zitat Verburg PH, Metternicht G, Allen C et al (2019) Creating an enabling environment for land degradation neutrality and its potential contribution to enhancing well-being, livelihoods and the environment. A report of the science-policy Interface. United Nations Convention to Combat Desertification (UNCCD), Bonn Verburg PH, Metternicht G, Allen C et al (2019) Creating an enabling environment for land degradation neutrality and its potential contribution to enhancing well-being, livelihoods and the environment. A report of the science-policy Interface. United Nations Convention to Combat Desertification (UNCCD), Bonn
Zurück zum Zitat WCED (1987) Brutland report: our common future WCED (1987) Brutland report: our common future
Zurück zum Zitat Wiesmeier M, Urbanski L, Hobley E, Lang B, von Lützow M, Marin-Spiotta E, van Wesemael B, Rabot E, Ließ M, Garcia-Franco N, Wollschläger U, Vogel HJ, Kögel-Knabner I (2019) Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales. Geoderma 333:149–162. https://doi.org/10.1016/j.geoderma.2018.07.026CrossRef Wiesmeier M, Urbanski L, Hobley E, Lang B, von Lützow M, Marin-Spiotta E, van Wesemael B, Rabot E, Ließ M, Garcia-Franco N, Wollschläger U, Vogel HJ, Kögel-Knabner I (2019) Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales. Geoderma 333:149–162. https://​doi.​org/​10.​1016/​j.​geoderma.​2018.​07.​026CrossRef
Metadaten
Titel
Biophysical and socioeconomic factors influencing soil carbon stocks: a global assessment
verfasst von
Sandra Duarte-Guardia
Pablo Peri
Wulf Amelung
Evert Thomas
Nils Borchard
German Baldi
Annette Cowie
Brenton Ladd
Publikationsdatum
24.07.2020
Verlag
Springer Netherlands
Erschienen in
Mitigation and Adaptation Strategies for Global Change / Ausgabe 6/2020
Print ISSN: 1381-2386
Elektronische ISSN: 1573-1596
DOI
https://doi.org/10.1007/s11027-020-09926-1

Weitere Artikel der Ausgabe 6/2020

Mitigation and Adaptation Strategies for Global Change 6/2020 Zur Ausgabe