Skip to main content

2015 | OriginalPaper | Buchkapitel

75. Blade Element Momentum Theory and CFD Modeling as a Tool for Optimizing Wind Turbine Blade Design

verfasst von : K. Dogan, G. Martinopoulos

Erschienen in: Renewable Energy in the Service of Mankind Vol I

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present chapter focuses on the comparison of the capabilities of Blade Element Momentum Theory (BEMT) in relation to computational fluid dynamics (CFD) modeling as a tool for the design and performance optimization of a horizontal axial wind turbine (HAWT).
A generated blade is examined in different scales by BEMT with the use of the QBlade software. The same wind turbine blade design was then incorporated in a detailed 3D CFD model (in ANSYS CFX). Computations were performed and the results were compared to the ones produced with the BEMT method.
For the CFD modeling, a National Advisory Committee for Aeronautics (NACA) profile was initially validated through a two-dimensional analysis and flow field investigation regarding lift and drag coefficients for a variety of angles of attack (AoA). For computation reasons, a rotating domain was applied. The domain is discretized into 4,320,733 elements, most of which are tetrahedral, creating 781,582 nodes. An extra inflation layer is used on the turbine boundary and mesh density is higher in that vicinity.
After the validation of the two-dimensional analysis, the wind turbine blade design was incorporated in a detailed 3D CFD model and computations were performed and compared to the ones of the BEMT method. Detailed transition formulas were applied and compared and a mesh independent solution was achieved. Furthermore, pressure and velocity distribution on the blade are analyzed and Cp graphs were produced.
The shear stress transport (SST) turbulence model capability to simulate the flow around an airfoil in the pro stall region was verified, while, the angle of attack at which stall begins could also be predicted using CFD modeling.
The study revealed the superior performance and advantages of CFD modeling in relation to BEMT since CFD can take into account the 3D effects of actual flow around a turbine blade which cannot be obtained by BEMT methodology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Marten D (2012) QBlade guidelines v 0.5. TU Berlin, Berlin Marten D (2012) QBlade guidelines v 0.5. TU Berlin, Berlin
3.
Zurück zum Zitat Marten D, Wendler J, Pechlivanoglou G, Nayeri CN, Paschereit CO (2013) QBlade: An open source tool for design and simulation of horizontal and vertical axis wind turbines. Int J Emerg Technol Adv Eng 3:264–269 Marten D, Wendler J, Pechlivanoglou G, Nayeri CN, Paschereit CO (2013) QBlade: An open source tool for design and simulation of horizontal and vertical axis wind turbines. Int J Emerg Technol Adv Eng 3:264–269
4.
Zurück zum Zitat Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA-J 32(8):1598–1605CrossRef Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA-J 32(8):1598–1605CrossRef
5.
Zurück zum Zitat Launder BE, Reece GJ, Rodi W (1975) Progress in the developments of a Reynolds-stress turbulence closure. J. Fluid Mechanics 68:537–566MATHCrossRef Launder BE, Reece GJ, Rodi W (1975) Progress in the developments of a Reynolds-stress turbulence closure. J. Fluid Mechanics 68:537–566MATHCrossRef
6.
Zurück zum Zitat Tenguria N, Mittal ND, Ahmed S (2010) Investigation of blade performance of horizontal axis wind turbine based on blade element momentum theory (BEMT). Int J Eng 12:25–35 Tenguria N, Mittal ND, Ahmed S (2010) Investigation of blade performance of horizontal axis wind turbine based on blade element momentum theory (BEMT). Int J Eng 12:25–35
7.
Zurück zum Zitat Rajakumar S, Ravindran D (2012) Iterative approach for optimizing coefficient of power, coefficient of lift and drag of wind turbine. Renew Energy 38:83–93CrossRef Rajakumar S, Ravindran D (2012) Iterative approach for optimizing coefficient of power, coefficient of lift and drag of wind turbine. Renew Energy 38:83–93CrossRef
8.
Zurück zum Zitat Yao J, Yuan W, Wang J, Xie J, Zhou H, Peng M, Sun Y (2012) Numerical simulation of aerodynamic performance for two dimensional wind turbine airfoils. Procedia Eng 31:80–86CrossRef Yao J, Yuan W, Wang J, Xie J, Zhou H, Peng M, Sun Y (2012) Numerical simulation of aerodynamic performance for two dimensional wind turbine airfoils. Procedia Eng 31:80–86CrossRef
9.
Zurück zum Zitat Singh K, Ahmed MR, Zullah MA, Lee Y-H (2012) Design of low Reynolds number airfoil for small horizontal axis wind turbines. Renew Energy 42:66–76CrossRef Singh K, Ahmed MR, Zullah MA, Lee Y-H (2012) Design of low Reynolds number airfoil for small horizontal axis wind turbines. Renew Energy 42:66–76CrossRef
10.
Zurück zum Zitat Thumthae C, Chitsomboon T (2009) Optimal angle of attack for untwisted blade wind turbine. Renew Energy 34:1279–1284CrossRef Thumthae C, Chitsomboon T (2009) Optimal angle of attack for untwisted blade wind turbine. Renew Energy 34:1279–1284CrossRef
11.
Zurück zum Zitat ANSYS CFX Documentation Ansys Inc (2010) ANSYS CFX Documentation Ansys Inc (2010)
12.
Zurück zum Zitat Ostowari C, Naik D (1984) Post stall studies of untwisted varying aspect ratio blades with an NACA 4415 airfoil section-part I. Wind Eng 8:186–194 Ostowari C, Naik D (1984) Post stall studies of untwisted varying aspect ratio blades with an NACA 4415 airfoil section-part I. Wind Eng 8:186–194
13.
Zurück zum Zitat Turkish Wind Energy Association (2012) Wind business in Turkey Turkish Wind Energy Association (2012) Wind business in Turkey
14.
Zurück zum Zitat Ladson C, Aeronautics USN, Scientific, SA, Division TI (1988) Effects of independent variation of Mach and Reynolds numbers on the low-speed aerodynamic characteristics of the NACA 0012 airfoil section, NASA technical memorandum, National Aeronautics and Space Administration, Scientific and Technical Information Division Ladson C, Aeronautics USN, Scientific, SA, Division TI (1988) Effects of independent variation of Mach and Reynolds numbers on the low-speed aerodynamic characteristics of the NACA 0012 airfoil section, NASA technical memorandum, National Aeronautics and Space Administration, Scientific and Technical Information Division
15.
Zurück zum Zitat Deperrois A (2009) XFLR5—Analysis of foils and wings operating at low reynolds numbers Deperrois A (2009) XFLR5—Analysis of foils and wings operating at low reynolds numbers
16.
Zurück zum Zitat Drela M, Youngren H (2001) XFOIL 6.94 user guide. MIT Aero & Astro New York Drela M, Youngren H (2001) XFOIL 6.94 user guide. MIT Aero & Astro New York
Metadaten
Titel
Blade Element Momentum Theory and CFD Modeling as a Tool for Optimizing Wind Turbine Blade Design
verfasst von
K. Dogan
G. Martinopoulos
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-17777-9_75