Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 4/2021

11.06.2021 | Original Research Article

Blast Furnace Ironmaking Process with Super-High TiO2 in the Slag: Sulfide Capacity

verfasst von: Jiawei Ling, Zhengde Pang, Yuyang Jiang, Zhiming Yan, Xuewei Lv

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To increase the utilization of V-Ti-Magnetite ore in the burden of a blast furnace, we investigated replacing CaO with MgO. The high fraction of TiO2-bearing raw materials leads to a super-high TiO2 content in the blast furnace slag, typically above 30 wt pct, which affects normal blast furnace operation. The present study focuses on the sulfide capacity of slag containing a super-high TiO2 content. The effects of TiO2 content and the ratio of MgO to CaO (M/C) on the sulfide capacity of slag were examined using a gas-slag equilibrium method. In the CaO-SiO2-TiO2-MgO-Al2O3 slag system, as the content of TiO2 in the slag increased from 20 to 34 wt pct, the sulfide capacity decreased from 6.25 × 10−5 to 2.86 × 10−5. Above 30 wt pct TiO2, the influence of TiO2 content on the sulfide capacity became negligible. Increasing the (M/C) ratio induced a non-monotonic trend in the sulfide capacity, which first increased and then decreased. Thermodynamic and structural analyses were employed to characterize the experimental results. Thermodynamically, decreasing the CaO activity reduced the free oxygen in the slag with increasing TiO2 content. Furthermore, an increase of titanium suboxide slowed the reduction of the sulfide capacity. Mass substitution mainly influenced the availability of free oxygen in the slag, and then the sulfide stability and oxygen concentration worked together, resulting in a non-monotonic sulfide capacity when MgO was substituted for CaO. In addition, the sulfide capacity was dependent on the effect of both the quaternary molar basicity and the binary molar basicity. Finally, the structural analysis revealed that for a super-high TiO2 content in the slag, both the structure of Ti and the depolymerization reaction of Ti had an extremely important effect on desulfurization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Z. Yuan, X. Wang, C. Xu, W. Li, and M. Kwauk: Miner. Eng., 2006, vol. 19, pp. 975-78.CrossRef Z. Yuan, X. Wang, C. Xu, W. Li, and M. Kwauk: Miner. Eng., 2006, vol. 19, pp. 975-78.CrossRef
2.
Zurück zum Zitat F. Valighazvini, F. Rashchi, and R. Khayyam Nekouei: Ind. Eng. Chem. Res., 2013, vol. 52, pp. 1723-30.CrossRef F. Valighazvini, F. Rashchi, and R. Khayyam Nekouei: Ind. Eng. Chem. Res., 2013, vol. 52, pp. 1723-30.CrossRef
3.
Zurück zum Zitat Z. Pang, X. Lv, Y. Jiang, J. Ling, and Z. Yan: Metall. Mater. Trans. B, 2020, vol. 51, pp. 722-31.CrossRef Z. Pang, X. Lv, Y. Jiang, J. Ling, and Z. Yan: Metall. Mater. Trans. B, 2020, vol. 51, pp. 722-31.CrossRef
4.
Zurück zum Zitat A. Shankar, M. Görnerup, A. K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2007, vol. 38, pp. 911-15.CrossRef A. Shankar, M. Görnerup, A. K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2007, vol. 38, pp. 911-15.CrossRef
5.
Zurück zum Zitat T. Nagasaka, M. Hino, and S. Ban-Ya: Metall. Mater. Trans. B, 2000, vol. 31, pp. 945-55.CrossRef T. Nagasaka, M. Hino, and S. Ban-Ya: Metall. Mater. Trans. B, 2000, vol. 31, pp. 945-55.CrossRef
6.
Zurück zum Zitat Z. Pang, X. Lv, J. Ling, Y. Jiang, Z. Yan, and J. Dang: Metall. Mater. Trans. B, 2020, vol. 51, pp. 2348-57.CrossRef Z. Pang, X. Lv, J. Ling, Y. Jiang, Z. Yan, and J. Dang: Metall. Mater. Trans. B, 2020, vol. 51, pp. 2348-57.CrossRef
8.
Zurück zum Zitat A. Shankar, M. Görnerup, S. Seetharaman, and A. K. Lahiri: Metall. Mater. Trans. B, 2006, vol. 37, pp. 941-47.CrossRef A. Shankar, M. Görnerup, S. Seetharaman, and A. K. Lahiri: Metall. Mater. Trans. B, 2006, vol. 37, pp. 941-47.CrossRef
9.
Zurück zum Zitat M. K. Cho, J. Cheng, J. H. Park, and D. J. Min: ISIJ Int., 2010, vol. 50, pp. 215-21.CrossRef M. K. Cho, J. Cheng, J. H. Park, and D. J. Min: ISIJ Int., 2010, vol. 50, pp. 215-21.CrossRef
10.
Zurück zum Zitat G.-H. Park, Y.-B. Kang, and J. H. Park: ISIJ Int., 2011, vol. 51, pp. 1375-82.CrossRef G.-H. Park, Y.-B. Kang, and J. H. Park: ISIJ Int., 2011, vol. 51, pp. 1375-82.CrossRef
11.
12.
Zurück zum Zitat J. Zhang, X. Lv, Z. Yan, Y. Qin, and C. Bai: Ironmak. Steelmak., 2016, vol. 43, pp. 378-84.CrossRef J. Zhang, X. Lv, Z. Yan, Y. Qin, and C. Bai: Ironmak. Steelmak., 2016, vol. 43, pp. 378-84.CrossRef
13.
Zurück zum Zitat I. Ghita, and H. Bell: Ironmak. Steelmak., 1982, vol. 9, pp. 239-43. I. Ghita, and H. Bell: Ironmak. Steelmak., 1982, vol. 9, pp. 239-43.
14.
Zurück zum Zitat S. Brown, R. Roxburgh, I. Ghita, and H. Bell: Ironmak. Steelmak., 1982, vol. 9, pp. 163-67. S. Brown, R. Roxburgh, I. Ghita, and H. Bell: Ironmak. Steelmak., 1982, vol. 9, pp. 163-67.
15.
Zurück zum Zitat I. D. Sommerville, and H. B. Bell: Can. Metall. Quart., 1982, vol. 21, pp. 145-55.CrossRef I. D. Sommerville, and H. B. Bell: Can. Metall. Quart., 1982, vol. 21, pp. 145-55.CrossRef
16.
Zurück zum Zitat M. Ito, K. Morita, and N. Sano: ISIJ Int., 1997, vol. 37, pp. 839-43.CrossRef M. Ito, K. Morita, and N. Sano: ISIJ Int., 1997, vol. 37, pp. 839-43.CrossRef
17.
Zurück zum Zitat C. Che, and W. Wang: Iron Steel V.Ti., 1984, vol. 3, pp. 004. C. Che, and W. Wang: Iron Steel V.Ti., 1984, vol. 3, pp. 004.
18.
Zurück zum Zitat J. Liu, and D. Li: Eng. Chem.Metall., 1987, vol. 1, pp. 008. J. Liu, and D. Li: Eng. Chem.Metall., 1987, vol. 1, pp. 008.
19.
21.
Zurück zum Zitat Z. Yan, X. Lv, Z. Pang, W. He, D. Liang, and C. Bai: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2607-14.CrossRef Z. Yan, X. Lv, Z. Pang, W. He, D. Liang, and C. Bai: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2607-14.CrossRef
22.
23.
Zurück zum Zitat K. Karsrud: Scand. J. Metall., 1984, vol. 13, pp. 265-68. K. Karsrud: Scand. J. Metall., 1984, vol. 13, pp. 265-68.
24.
Zurück zum Zitat K. Karsrud: Scand. J. Metall., 1984, vol. 13, pp. 144-50. K. Karsrud: Scand. J. Metall., 1984, vol. 13, pp. 144-50.
25.
Zurück zum Zitat R. J. Hawkins, G. S. Meherali, and M. W. Davies: Ironmak. Steelmak., 1971, 209, 646-57. R. J. Hawkins, G. S. Meherali, and M. W. Davies: Ironmak. Steelmak., 1971, 209, 646-57.
26.
Zurück zum Zitat Y.-B. Kang, and J. H. Park: Metall. Mater. Trans. B, 2011, vol. 42, pp. 1211-17.CrossRef Y.-B. Kang, and J. H. Park: Metall. Mater. Trans. B, 2011, vol. 42, pp. 1211-17.CrossRef
27.
Zurück zum Zitat L. Wang, Y. Wang, K.-c. Chou, and S. Seetharaman: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2558-63.CrossRef L. Wang, Y. Wang, K.-c. Chou, and S. Seetharaman: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2558-63.CrossRef
28.
Zurück zum Zitat L.-j. Wang, M. Hayashi, K.-c. Chou, and S. Seetharaman: Metall. Mater. Trans. B, 2012, vol. 43, pp. 1338-43.CrossRef L.-j. Wang, M. Hayashi, K.-c. Chou, and S. Seetharaman: Metall. Mater. Trans. B, 2012, vol. 43, pp. 1338-43.CrossRef
29.
30.
Zurück zum Zitat J. H. Park, D. J. Min, and H. S. Song: Metall. Mater. Trans. B, 2004, vol. 35, pp. 269-75.CrossRef J. H. Park, D. J. Min, and H. S. Song: Metall. Mater. Trans. B, 2004, vol. 35, pp. 269-75.CrossRef
32.
Zurück zum Zitat Q. Shu: Steel. Res. Int., 2009, vol. 80, pp. 107-13. Q. Shu: Steel. Res. Int., 2009, vol. 80, pp. 107-13.
33.
Zurück zum Zitat G. Zhang, K. Chou, and K. Mills: Metall. Mater. Trans. B, 2014, vol. 45, pp. 698-706.CrossRef G. Zhang, K. Chou, and K. Mills: Metall. Mater. Trans. B, 2014, vol. 45, pp. 698-706.CrossRef
34.
Zurück zum Zitat Mysen BO, and Richet P: Silicate Glasses and Melts: Properties and Structure, 1st ed., Elsevier, San Diego, 2005, pp. 322–26. Mysen BO, and Richet P: Silicate Glasses and Melts: Properties and Structure, 1st ed., Elsevier, San Diego, 2005, pp. 322–26.
35.
Zurück zum Zitat G. S. Henderson, X. Liu, and M. E. Fleet: Phys Chem Miner, 2002, vol. 29, pp. 32-42.CrossRef G. S. Henderson, X. Liu, and M. E. Fleet: Phys Chem Miner, 2002, vol. 29, pp. 32-42.CrossRef
36.
Zurück zum Zitat D. R. Sandstrom, F. W. Lytle, P. S. P. Wei, R. B. Greegor, J. Wong, and P. Schultz: J Non-Cryst Solids, 1980, vol. 41, pp. 201-07.CrossRef D. R. Sandstrom, F. W. Lytle, P. S. P. Wei, R. B. Greegor, J. Wong, and P. Schultz: J Non-Cryst Solids, 1980, vol. 41, pp. 201-07.CrossRef
37.
Zurück zum Zitat R. B. Greegor, F. W. Lytle, D. R. Sandstrom, J. Wong, and P. Schultz: J Non-Cryst Solids, 1983, vol. 55, pp. 27-43.CrossRef R. B. Greegor, F. W. Lytle, D. R. Sandstrom, J. Wong, and P. Schultz: J Non-Cryst Solids, 1983, vol. 55, pp. 27-43.CrossRef
38.
Zurück zum Zitat Z. Yan, R.G. Reddy, X. Lv, Z. Pang, and W. He: Ironmak. Steelmak., 2018, pp. 1-7. Z. Yan, R.G. Reddy, X. Lv, Z. Pang, and W. He: Ironmak. Steelmak., 2018, pp. 1-7.
39.
Zurück zum Zitat C. J. B. Fincham, and F. D. Richardson: Proc. R. Soc. Lond. Ser. A, 1954, vol. 223, pp. 40-62.CrossRef C. J. B. Fincham, and F. D. Richardson: Proc. R. Soc. Lond. Ser. A, 1954, vol. 223, pp. 40-62.CrossRef
40.
Zurück zum Zitat Z. Ren, X. Hu, and K. Chou: J Iron Steel Res Int, 2013, vol. 20, pp. 21-25.CrossRef Z. Ren, X. Hu, and K. Chou: J Iron Steel Res Int, 2013, vol. 20, pp. 21-25.CrossRef
41.
Zurück zum Zitat B.O. Mysen, P. Richet, Silicate Glasses and Melts, Elsevier, Amsterdam, 2005. B.O. Mysen, P. Richet, Silicate Glasses and Melts, Elsevier, Amsterdam, 2005.
44.
Zurück zum Zitat J.H. Park, J. Non-Cryst. Solids, 358 (2012) 3096-3102. J.H. Park, J. Non-Cryst. Solids, 358 (2012) 3096-3102.
46.
Zurück zum Zitat K. Zheng, Z. Zhang, L. Liu, and X. Wang: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1389-97.CrossRef K. Zheng, Z. Zhang, L. Liu, and X. Wang: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1389-97.CrossRef
47.
Zurück zum Zitat J. Ryerson: Am. Miner., 1980, vol. 65, pp. 1150–65. J. Ryerson: Am. Miner., 1980, vol. 65, pp. 1150–65.
Metadaten
Titel
Blast Furnace Ironmaking Process with Super-High TiO2 in the Slag: Sulfide Capacity
verfasst von
Jiawei Ling
Zhengde Pang
Yuyang Jiang
Zhiming Yan
Xuewei Lv
Publikationsdatum
11.06.2021
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 4/2021
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-021-02192-9

Weitere Artikel der Ausgabe 4/2021

Metallurgical and Materials Transactions B 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.