Skip to main content
Erschienen in: Wireless Personal Communications 3/2018

27.10.2017

Block and Fast Block Sparse Adaptive Filtering for Outdoor Wireless Channel Estimation and Equalization

verfasst von: Harish Kumar Sahoo, Basabadatta Mohanty, Bijayananda Patnaik

Erschienen in: Wireless Personal Communications | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Rayleigh’s distribution is mainly used when fading wireless medium does not have proper line of sight (LOS) path and is dominated by a large number of non-line of sight (NLOS) paths due to reflections of the received signal. Also because of relative motion of the base station and mobile station, a random frequency shift is generally introduced in the carrier, which can be realized in terms of Doppler spread. In case of Rayleigh’s fading channels, there are two critical problems for receiver design that is accurate estimation of channel coefficients followed by mitigation of channel impairments like inter symbol interference and fading in presence of user mobility. The accuracy of estimated channel state information is really crucial to design robust equalizer for reconstruction of bit sequence and the equalizer performance is affected by the fading rate and Doppler spread. The main research contributions of the paper is based on the exploitation of underlying sparseness of block adaptive filters through \(l_{0}\)-norm penalty for accurate estimation with stable convergence which helps to design computationally efficient adaptive models for estimation. The accuracy of the proposed sparse block and fast block models is tested using 16 QAM modulation format with Rayleigh’s fading wireless channel for outdoor environments. With the help of MATLAB simulations, the performance of the proposed sparse BLMS and FBLMS adaptive filtering are verified and the detail comparison results are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Nakhai, M. R. (2008). Multicarrier transmission. IET Signal Processing, 2(1), 1–14.CrossRef Nakhai, M. R. (2008). Multicarrier transmission. IET Signal Processing, 2(1), 1–14.CrossRef
2.
Zurück zum Zitat Zhuang, W. (1999). Adaptive channel equalization for wireless personal communications. IEEE Transactions on Vehicular Technology, 48(1), 126–136.CrossRef Zhuang, W. (1999). Adaptive channel equalization for wireless personal communications. IEEE Transactions on Vehicular Technology, 48(1), 126–136.CrossRef
3.
Zurück zum Zitat Gunther, J., & Moon, T. (2009). Minimum bays risk adaptive linear equalizers. IEEE Transactions on Signal Processing, 57(12), 4788–4799.MathSciNetCrossRef Gunther, J., & Moon, T. (2009). Minimum bays risk adaptive linear equalizers. IEEE Transactions on Signal Processing, 57(12), 4788–4799.MathSciNetCrossRef
4.
Zurück zum Zitat Chen, R., Jr., & Wu, W.-R. (2004). Adaptive asymptotic bayesian equalization using a signal space partitioning technique. IEEE Transactions on Signal Processing, 52(5), 1376–1386.MathSciNetCrossRefMATH Chen, R., Jr., & Wu, W.-R. (2004). Adaptive asymptotic bayesian equalization using a signal space partitioning technique. IEEE Transactions on Signal Processing, 52(5), 1376–1386.MathSciNetCrossRefMATH
5.
Zurück zum Zitat Laot, C., Glavieux, A., & Labat, J. (2001). Turbo equalization: Adaptive equalization and channel decoding jointly optimized. IEEE Journal on Selected Areas in Communications, 19(9), 1744–1752.CrossRef Laot, C., Glavieux, A., & Labat, J. (2001). Turbo equalization: Adaptive equalization and channel decoding jointly optimized. IEEE Journal on Selected Areas in Communications, 19(9), 1744–1752.CrossRef
6.
Zurück zum Zitat Zhou, X., Liu, F., Yin, Y., Li, Q., & Qin, J. (2017). Robust beam forming for simultaneous wireless information and power transfer in MISO interference channels. Wireless Personal Communications, 92, 1545–1557.CrossRef Zhou, X., Liu, F., Yin, Y., Li, Q., & Qin, J. (2017). Robust beam forming for simultaneous wireless information and power transfer in MISO interference channels. Wireless Personal Communications, 92, 1545–1557.CrossRef
7.
Zurück zum Zitat Jiang, S. Peng, J., Lu, Z., Jiao, J., & Jiang, S., (2014). 802.11ad key performance analysis and its application in home wireless entertainment. In 2014 IEEE 17th international conference on computational science and engineering (CSE). Jiang, S. Peng, J., Lu, Z., Jiao, J., & Jiang, S., (2014). 802.11ad key performance analysis and its application in home wireless entertainment. In 2014 IEEE 17th international conference on computational science and engineering (CSE).
8.
Zurück zum Zitat Naylor, P. A., Cui, J., & Brookes, M. (2006). Adaptive algorithms for sparse echo cancellation. Signal Processing, 86(6), 1182–1192.CrossRefMATH Naylor, P. A., Cui, J., & Brookes, M. (2006). Adaptive algorithms for sparse echo cancellation. Signal Processing, 86(6), 1182–1192.CrossRefMATH
9.
Zurück zum Zitat Martin, R. K., Sethares, W. A., et al. (2002). Exploiting sparsity in adaptive filters. IEEE Transactions Signal Processing, 50, 1883–1894.CrossRef Martin, R. K., Sethares, W. A., et al. (2002). Exploiting sparsity in adaptive filters. IEEE Transactions Signal Processing, 50, 1883–1894.CrossRef
10.
Zurück zum Zitat Jiang, S., & Gu, Y. (2015). Block-sparsity-induced adaptive filter for multi-clustering system identification. IEEE Transactions on Signal Processing, 63(20), 5318–5330.MathSciNetCrossRef Jiang, S., & Gu, Y. (2015). Block-sparsity-induced adaptive filter for multi-clustering system identification. IEEE Transactions on Signal Processing, 63(20), 5318–5330.MathSciNetCrossRef
11.
Zurück zum Zitat Gu, Y., Jin, J., & Mei, S. (2009). Norm constraint LMS algorithm for sparse system identification. IEEE Signal Processing Letters, 16(9), 774–777.CrossRef Gu, Y., Jin, J., & Mei, S. (2009). Norm constraint LMS algorithm for sparse system identification. IEEE Signal Processing Letters, 16(9), 774–777.CrossRef
12.
Zurück zum Zitat Poggioni, M., Rugini, L., & Banelli, P. (2008). A novel simulation model for coded OFDM in doppler scenarios. IEEE Transactions on Vehicular Technology, 57(5), 2969–2980.CrossRef Poggioni, M., Rugini, L., & Banelli, P. (2008). A novel simulation model for coded OFDM in doppler scenarios. IEEE Transactions on Vehicular Technology, 57(5), 2969–2980.CrossRef
13.
Zurück zum Zitat Ko, Y.-C., & Jeong, G. (2002). Doppler spread estimation in mobile communication systems. In IEEE Vehicular Technology Conference (pp. 1941–1945). Ko, Y.-C., & Jeong, G. (2002). Doppler spread estimation in mobile communication systems. In IEEE Vehicular Technology Conference (pp. 1941–1945).
14.
Zurück zum Zitat Banelli, P., Cannizzaro, C. R., & Rugini, L. (2007). Data-aided Kalman Tracking for channel estimation in Doppler-affected OFDM systems. In Proceedings of IEEE ICASSP (Vol. 3, pp. 133–136). Banelli, P., Cannizzaro, C. R., & Rugini, L. (2007). Data-aided Kalman Tracking for channel estimation in Doppler-affected OFDM systems. In Proceedings of IEEE ICASSP (Vol. 3, pp. 133–136).
15.
Zurück zum Zitat Wu, W. R., Lee, C. F., & Chen, Y. F. (2009). Time domain equalization for discrete multitone transceivers. IET Communication, 3(7), 1186–1200.CrossRef Wu, W. R., Lee, C. F., & Chen, Y. F. (2009). Time domain equalization for discrete multitone transceivers. IET Communication, 3(7), 1186–1200.CrossRef
16.
Zurück zum Zitat Datta, A., Hari, K. V. S., & Hanzo, L. (2014). Channel estimation relying on the minimum bit error ratio criterion for BPSK and QPSK signals. IET Communications, 8, 69–76.CrossRef Datta, A., Hari, K. V. S., & Hanzo, L. (2014). Channel estimation relying on the minimum bit error ratio criterion for BPSK and QPSK signals. IET Communications, 8, 69–76.CrossRef
17.
Zurück zum Zitat Di Lorenzo, P., Barbarossa, S., Banelli, P., & Sardellitti, S. (2016). Adaptive least mean squares estimation of graph signals. IEEE Transactions on Signal and Information Processing, 2(4), 555–568.MathSciNet Di Lorenzo, P., Barbarossa, S., Banelli, P., & Sardellitti, S. (2016). Adaptive least mean squares estimation of graph signals. IEEE Transactions on Signal and Information Processing, 2(4), 555–568.MathSciNet
18.
Zurück zum Zitat Chang, M.-X., & Su, Y. T. (2002). Model-based channel estimation for OFDM signals in rayleigh fading. IEEE Transactions on Communications, 50(4), 1963–1968. Chang, M.-X., & Su, Y. T. (2002).  Model-based channel estimation for OFDM signals in rayleigh fading. IEEE Transactions on Communications, 50(4), 1963–1968.
19.
Zurück zum Zitat Li, L., He, X., & Zhang, H. (2016). Bandwidth efficient design and channel estimation over time-varying fading environments. In 9th IEEE international congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI) (pp. 1091–1095). Li, L., He, X., & Zhang, H. (2016). Bandwidth efficient design and channel estimation over time-varying fading environments. In 9th IEEE international congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI) (pp. 1091–1095).
20.
Zurück zum Zitat Patraj, C., & Pal, N. R. N. (1995). A functional link artificial neural network for adaptive channel equalization. Digital Signal Processing, 43(2), 81–195. Patraj, C., & Pal, N. R. N. (1995). A functional link artificial neural network for adaptive channel equalization. Digital Signal Processing, 43(2), 81–195.
21.
Zurück zum Zitat Hussein, A., Soraghan, J., & Durrani, T. S. (1997). A new adaptive functional-link neural-network-based DFE for overcoming co-channel interference. IEEE Transactions on Communications, 45(11), 1358–1362.CrossRef Hussein, A., Soraghan, J., & Durrani, T. S. (1997). A new adaptive functional-link neural-network-based DFE for overcoming co-channel interference. IEEE Transactions on Communications, 45(11), 1358–1362.CrossRef
22.
Zurück zum Zitat Patra, J. C., Pal, R. N., Chatterji, B. N., & Panda, G. (2009). Identification of nonlinear dynamic systems using functional link artificial neural network. IEEE Transactions on Systems, Man and Cybernetics, 29(2), 254–262.CrossRef Patra, J. C., Pal, R. N., Chatterji, B. N., & Panda, G. (2009). Identification of nonlinear dynamic systems using functional link artificial neural network. IEEE Transactions on Systems, Man and Cybernetics, 29(2), 254–262.CrossRef
23.
Zurück zum Zitat Sicuranza, G. L., & Carini, A. (2011). A generalized FLANN filter for nonlinear active noise control. IEEE Transactions on Audio, Speech and Language Processing, 19(8), 2412–2417.CrossRef Sicuranza, G. L., & Carini, A. (2011). A generalized FLANN filter for nonlinear active noise control. IEEE Transactions on Audio, Speech and Language Processing, 19(8), 2412–2417.CrossRef
24.
Zurück zum Zitat Taheri, O., & Vorobyov, S. A. (2011). Sparse channel estimation with lp-norm and reweighed l1-norm penalized least mean squares. In IEEE ICASSP (pp. 2864–2867). Taheri, O., & Vorobyov, S. A. (2011). Sparse channel estimation with lp-norm and reweighed l1-norm penalized least mean squares. In IEEE ICASSP (pp. 2864–2867).
25.
Zurück zum Zitat Angelosante, D., Bazerque, J. A., & Giannakis, G. B. (2010). Online adaptive estimation of sparse signals: Where RLS meets the l1-norm. IEEE Transactions on Signal Processing, 58, 3436–3447.MathSciNetCrossRef Angelosante, D., Bazerque, J. A., & Giannakis, G. B. (2010). Online adaptive estimation of sparse signals: Where RLS meets the l1-norm. IEEE Transactions on Signal Processing, 58, 3436–3447.MathSciNetCrossRef
26.
Zurück zum Zitat Chen, Y., Gu, Y., Hero, A. O. (2009). Sparse LMS for system identification. In Proceedings IEEE ICASSP, Taipei (pp. 3125–3128). Chen, Y., Gu, Y., Hero, A. O. (2009). Sparse LMS for system identification. In Proceedings IEEE ICASSP, Taipei (pp. 3125–3128).
27.
Zurück zum Zitat Martin, R. K., Sethares, W. A., et al. (2002). Exploiting sparsity in adaptive filters. IEEE Transactions on Signal Processing, 50, 1883–1894.CrossRef Martin, R. K., Sethares, W. A., et al. (2002). Exploiting sparsity in adaptive filters. IEEE Transactions on Signal Processing, 50, 1883–1894.CrossRef
28.
Zurück zum Zitat Etter, D. M. (1985). Identification of sparse impulse response systems using an adaptive delay filter. In ICASSP (Vol. 85, pp. 1167–1172). Etter, D. M. (1985). Identification of sparse impulse response systems using an adaptive delay filter. In ICASSP (Vol. 85, pp. 1167–1172).
29.
Zurück zum Zitat Rugini, L., Banelli, P., & Berioli, M. (2007). Block equalization for single-carrier satellite communications with high mobility receivers. In Proceedings of IEEE Globecom (pp. 5021–5025). Rugini, L., Banelli, P., & Berioli, M. (2007). Block equalization for single-carrier satellite communications with high mobility receivers. In Proceedings of IEEE Globecom (pp. 5021–5025).
30.
Zurück zum Zitat Gross, J. H., Etter, D. M., Margo, V. A., & Carlson, N. C. (1992, August) A block selection adaptive delay filter algorithm for echo cancellation. In Proceedings of the 35th Midwest Symposium on Circuits and Systems (pp. 895–898). Gross, J. H., Etter, D. M., Margo, V. A., & Carlson, N. C. (1992, August) A block selection adaptive delay filter algorithm for echo cancellation. In Proceedings of the 35th Midwest Symposium on Circuits and Systems (pp. 895–898).
31.
Zurück zum Zitat Rugini, L., & Banelli, P. (2008). Frequency-domain extended models for equalization of doubly-selective channels. In Proceedings of the IEEE SPAWC (pp. 520–524). Rugini, L., & Banelli, P. (2008). Frequency-domain extended models for equalization of doubly-selective channels. In Proceedings of the IEEE SPAWC (pp. 520–524).
32.
Zurück zum Zitat Dentino, M., McCool, J., & Widrow, B. (1978). Adaptive filtering in the frequency domain. Proceedings of the IEEE, 66, 1658–1659.CrossRef Dentino, M., McCool, J., & Widrow, B. (1978). Adaptive filtering in the frequency domain. Proceedings of the IEEE, 66, 1658–1659.CrossRef
33.
Zurück zum Zitat Bershad, N. J., & Feintuch, P. L. (1979). Analysis of the frequency domain adaptive filter. Proceedings of the IEEE, 67, 1658–1659.CrossRef Bershad, N. J., & Feintuch, P. L. (1979). Analysis of the frequency domain adaptive filter. Proceedings of the IEEE, 67, 1658–1659.CrossRef
34.
Zurück zum Zitat Narayan, S. S., & Peterson, A. M. (1981). Frequency domain LMS algorithm. Proceedings of the ZEEE, 69, 124–126. Narayan, S. S., & Peterson, A. M. (1981). Frequency domain LMS algorithm. Proceedings of the ZEEE, 69, 124–126.
35.
Zurück zum Zitat Sahoo, H. K., & Mohanty, B. (2016). Adaptive decision feedback equalizer for SISO communication channel using combined FIR-neural network and fast block LMS algorithm. In IEEE INDICON. Sahoo, H. K., & Mohanty, B. (2016). Adaptive decision feedback equalizer for SISO communication channel using combined FIR-neural network and fast block LMS algorithm. In IEEE INDICON.
Metadaten
Titel
Block and Fast Block Sparse Adaptive Filtering for Outdoor Wireless Channel Estimation and Equalization
verfasst von
Harish Kumar Sahoo
Basabadatta Mohanty
Bijayananda Patnaik
Publikationsdatum
27.10.2017
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2018
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-5013-6

Weitere Artikel der Ausgabe 3/2018

Wireless Personal Communications 3/2018 Zur Ausgabe

Neuer Inhalt