Skip to main content
Erschienen in: Journal of Scientific Computing 1/2016

21.11.2015

Block Decomposition Methods for Total Variation by Primal–Dual Stitching

verfasst von: Chang-Ock Lee, Jong Ho Lee, Hyenkyun Woo, Sangwoon Yun

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to the advance of image capturing devices, huge size of images are available in our daily life. As a consequence the processing of large scale image data is highly demanded. Since the total variation (TV) is kind of de facto standard in image processing, we consider block decomposition methods for TV based variational models to handle large scale images. Unfortunately, TV is non-separable and non-smooth and it thus is challenging to solve TV based variational models in a block decomposition. In this paper, we introduce a primal–dual stitching (PDS) method to efficiently process the TV based variational models in the block decomposition framework. To characterize TV in the block decomposition framework, we only focus on the proximal map of TV function. Empirically, we have observed that the proposed PDS based block decomposition framework outperforms other state-of-art methods such as Bregman operator splitting based approach in terms of computational speed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
It is inspired from an image stitching method in [25].
 
2
As shown in Theorem 3, the sequential method (i.e., BD-S) with \({\textit{subMaxIt}}=1\) and \(\omega =1\) corresponds to the method (i.e., PLAD) without using block decomposition.
 
3
Note that one iteration condition is used in coordinate optimization only with primal variable to find a solution of fused Lasso problem [10].
 
4
Note that the original PLAD algorithm in [27] linearizes fidelity term and augmented term at the same time. However, since the fidelity term of the proxTV model (1) is a simple proximal term, the original PLAD method is up to constant equal to (40), which we called PLAD in this paper.
 
Literatur
1.
Zurück zum Zitat Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)MathSciNetCrossRefMATH Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18, 2419–2434 (2009)MathSciNetCrossRef Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18, 2419–2434 (2009)MathSciNetCrossRef
3.
Zurück zum Zitat Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation. Prentice Hall, Upper Saddle River (1989)MATH Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation. Prentice Hall, Upper Saddle River (1989)MATH
4.
Zurück zum Zitat Carstensen, C.: Domain decomposition for a non-smooth convex minimization problems and its application to plasticity. Numer. Linear Algebra Appl. 4, 177–190 (1998)MathSciNetCrossRefMATH Carstensen, C.: Domain decomposition for a non-smooth convex minimization problems and its application to plasticity. Numer. Linear Algebra Appl. 4, 177–190 (1998)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Combettes, P., Wajs, W.: Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)MathSciNetCrossRefMATH Combettes, P., Wajs, W.: Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)MathSciNetCrossRefMATH Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)MathSciNetCrossRefMATH
7.
8.
Zurück zum Zitat Chang, H., Tai, X.-C., Wang, L.-L., Yang, D.: Convergence rate of overlapping domain decomposition methods for the Rudin–Osher–Fatemi model based on a dual formulation. SIAM J. Imaging Sci. 8, 564–591 (2015)MathSciNetCrossRefMATH Chang, H., Tai, X.-C., Wang, L.-L., Yang, D.: Convergence rate of overlapping domain decomposition methods for the Rudin–Osher–Fatemi model based on a dual formulation. SIAM J. Imaging Sci. 8, 564–591 (2015)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Esser, E.: Applications of Lagrangian-based alternating direction methods and connections to split Bregman. UCLA Cam Report, 9, 31 (2009) Esser, E.: Applications of Lagrangian-based alternating direction methods and connections to split Bregman. UCLA Cam Report, 9, 31 (2009)
10.
Zurück zum Zitat Friedman, J., Hastie, T., Höfling, H., Tibshirani, R.: Pathwise coordinate optimization. Ann. Appl. Stat. 1, 302–332 (2007)MathSciNetCrossRefMATH Friedman, J., Hastie, T., Höfling, H., Tibshirani, R.: Pathwise coordinate optimization. Ann. Appl. Stat. 1, 302–332 (2007)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Fornasier, M.: Domain decomposition methods for linear inverse problems with sparsity constraints. Inverse Probl. 23, 2505–2526 (2007)MathSciNetCrossRefMATH Fornasier, M.: Domain decomposition methods for linear inverse problems with sparsity constraints. Inverse Probl. 23, 2505–2526 (2007)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Fornasier, M., Langer, A., Schönlieb, C.-B.: A convergent overlapping domain decomposition method for total variation minimization. Numer. Math. 116, 645–685 (2010)MathSciNetCrossRefMATH Fornasier, M., Langer, A., Schönlieb, C.-B.: A convergent overlapping domain decomposition method for total variation minimization. Numer. Math. 116, 645–685 (2010)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Fornasier, M., Schönlieb, C.-B.: Subspace correction methods for total variation and l1-minimization. SIAM J. Numer. Anal. 47, 3397–3428 (2009)MathSciNetCrossRefMATH Fornasier, M., Schönlieb, C.-B.: Subspace correction methods for total variation and l1-minimization. SIAM J. Numer. Anal. 47, 3397–3428 (2009)MathSciNetCrossRefMATH
14.
15.
Zurück zum Zitat Hageman, L.A., Porsching, T.A.: Aspects of nonlinear block successive overrelaxation. SIAM J. Numer. Anal. 2, 316–335 (1975)MathSciNetCrossRefMATH Hageman, L.A., Porsching, T.A.: Aspects of nonlinear block successive overrelaxation. SIAM J. Numer. Anal. 2, 316–335 (1975)MathSciNetCrossRefMATH
16.
Zurück zum Zitat He, B., Liao, L.Z., Han, D., Yang, H.: A new inexact alternating directions method for monotone variational inequalities. Math. Program. 92, 103–118 (2002)MathSciNetCrossRefMATH He, B., Liao, L.Z., Han, D., Yang, H.: A new inexact alternating directions method for monotone variational inequalities. Math. Program. 92, 103–118 (2002)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Hintermüller, M., Langer, A.: Subspace correction methods for a class of non-smooth and non-additive convex variational problems with mixed \(L^{1}/L^{2}\) data-fidelity in image processing. SIAM J. Imaging Sci. 6, 2134–2173 (2013)MathSciNetCrossRefMATH Hintermüller, M., Langer, A.: Subspace correction methods for a class of non-smooth and non-additive convex variational problems with mixed \(L^{1}/L^{2}\) data-fidelity in image processing. SIAM J. Imaging Sci. 6, 2134–2173 (2013)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Hintermüller, M., Langer, A.: Non-overlapping domain decomposition methods for dual total variation based image denoising. J. Sci. Comp. 62, 456–481 (2015) Hintermüller, M., Langer, A.: Non-overlapping domain decomposition methods for dual total variation based image denoising. J. Sci. Comp. 62, 456–481 (2015)
19.
Zurück zum Zitat Hintermüller, M., Langer, A.: Subspace correction methods for a class of non-smooth and non-additive convex variational problems with mixed \(L^1/L^2\) data-fidelity in image processing. SIAM J. Imaging Sci. 6, 2134–2173 (2013)MathSciNetCrossRefMATH Hintermüller, M., Langer, A.: Subspace correction methods for a class of non-smooth and non-additive convex variational problems with mixed \(L^1/L^2\) data-fidelity in image processing. SIAM J. Imaging Sci. 6, 2134–2173 (2013)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Kang, M., Yun, S., Woo, H.: Two-level convex relaxed variational model for multiplicative denoising. SIAM J. Imaging Sci. 6, 875–903 (2013)MathSciNetCrossRefMATH Kang, M., Yun, S., Woo, H.: Two-level convex relaxed variational model for multiplicative denoising. SIAM J. Imaging Sci. 6, 875–903 (2013)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Langer, A., Osher, S., Schönlieb, C.-B.: Bregmanized domain decomposition for image restoration. J. Sci. Comput. 54, 549–576 (2013)MathSciNetCrossRefMATH Langer, A., Osher, S., Schönlieb, C.-B.: Bregmanized domain decomposition for image restoration. J. Sci. Comput. 54, 549–576 (2013)MathSciNetCrossRefMATH
22.
23.
Zurück zum Zitat Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 109, 475–494 (2001)MathSciNetCrossRefMATH Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 109, 475–494 (2001)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable minimization. Math. Prog. (Ser. B) 117, 387–423 (2009)MathSciNetCrossRefMATH Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable minimization. Math. Prog. (Ser. B) 117, 387–423 (2009)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Wen, Z., Yin, W., Zhang, Y.: Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Math. Program. Comput. 4, 333–361 (2012)MathSciNetCrossRefMATH Wen, Z., Yin, W., Zhang, Y.: Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Math. Program. Comput. 4, 333–361 (2012)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Woo, H., Yun, S.: Proximal linearized alternating direction method for multiplicative denoising. SIAM J. Sci. Comput. 35, B336–B358 (2013)MathSciNetCrossRefMATH Woo, H., Yun, S.: Proximal linearized alternating direction method for multiplicative denoising. SIAM J. Sci. Comput. 35, B336–B358 (2013)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Wu, C., Tai, X.-C.: Augmented Lagrangian method, Dual methods and Split-Bregman Iterations for ROF, vectorial TV and higher order models. SIAM J. Imaging Sci. 3, 300–339 (2010)MathSciNetCrossRefMATH Wu, C., Tai, X.-C.: Augmented Lagrangian method, Dual methods and Split-Bregman Iterations for ROF, vectorial TV and higher order models. SIAM J. Imaging Sci. 3, 300–339 (2010)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Xu, J., Tai, X.-C., Wang, L.-L.: A two-level domain decomposition method for image restoration. Inverse Probl. Imaging 4, 523–545 (2010)MathSciNetCrossRefMATH Xu, J., Tai, X.-C., Wang, L.-L.: A two-level domain decomposition method for image restoration. Inverse Probl. Imaging 4, 523–545 (2010)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Yun, S., Woo, H.: Linearized proximal alternating minimization algorithm for motion deblurring by nonlocal regularization. Pattern Recognit. 44, 1312–1326 (2011)CrossRefMATH Yun, S., Woo, H.: Linearized proximal alternating minimization algorithm for motion deblurring by nonlocal regularization. Pattern Recognit. 44, 1312–1326 (2011)CrossRefMATH
31.
Zurück zum Zitat Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3, 253–276 (2010)MathSciNetCrossRefMATH Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3, 253–276 (2010)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Zhang, X., Burger, M., Osher, S.: A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46, 20–46 (2011)MathSciNetCrossRefMATH Zhang, X., Burger, M., Osher, S.: A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46, 20–46 (2011)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM-report (2008) Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM-report (2008)
Metadaten
Titel
Block Decomposition Methods for Total Variation by Primal–Dual Stitching
verfasst von
Chang-Ock Lee
Jong Ho Lee
Hyenkyun Woo
Sangwoon Yun
Publikationsdatum
21.11.2015
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2016
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-015-0138-9

Weitere Artikel der Ausgabe 1/2016

Journal of Scientific Computing 1/2016 Zur Ausgabe