Die thermischen Wirkungsgrade von Kraftwerken zur Stromerzeugung sind relativ gering. Beispielsweise erreichen moderne Kohlekraftwerke heute bis etwa 45 %, Gasturbinen maximal 40 % und Diesel‐Motoren nicht über 50 %. Kombinations‐Kraftwerke, d.h. Gas‑ und Dampfturbinen‐Prozesse, können an die 60 % thermischer Wirkungsgrad bei der Umwandlung der zugeführten Wärme in mechanische bzw. elektrische Energie erzielen. Ein ähnlich hoher Wert wird in Zukunft von den Brennstoffzellen erwartet. Der nicht in Arbeit umgewandelte Anteil der zugeführten Wärme fällt als Abwärme an und geht ungenutzt in die Umgebung. Ein Teil dieser Abwärme lässt sich durch entsprechende Installationen bei allen Kraftwerksprozessen zur Wassererwärmung oder zur Dampferzeugung für industrielle Zwecke nutzen. Für Heizzwecke genügt eine Temperatur der Abwärme von 60 bis 80 °C, während die Erzeugung von Industriedampf deutlich höhere Temperaturen voraussetzt.
Wird neben der mechanischen Energie auch Wärme als Nutzen angesehen, so reicht der thermische Wirkungsgrad \( \upeta_{\text{th}}=\text{P}_{\text{mech}}/ {{\dot{\text{Q}}}_{\text{zu}}}\) nicht mehr zur Beschreibung der Prozessgüte aus. Zweckmäßig ist der Brennstoffnutzungsgrad ηBst, der den Nutzwärmestrom \( {{\dot{\text{Q}}}_{\text{Nutz}}}\) gleichwertig zur elektrischen bzw. mechanischen Leistung setzt:
Die Temperatur und der Aggregatzustand (flüssiger oder dampfförmiger Wärmeträger) charakterisieren die Qualität der Nutzwärme. Eine Nutzwärme bei hoher Temperatur kann auch für verfahrenstechnische Prozesse, die oft eine hohe Temperatur benötigen, genutzt werden. Für Nutzwärme mit hoher Temperatur lassen sich deshalb höhere Preise erlösen. Deshalb ist die Nutzwärme‐Temperatur eine weitere Kenngröße.
Anzeige
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
\( {{\dot{\text{Q}}}_{\text{Nutz}}}\) ist die genutzte Wärmeleistung, Pel die elektrische Leistung, Pmech die mechanische Leistung, \( {{\dot{\text{Q}}}_{\text{zu}}}\) der über den Brennstoff dem Kreisprozess zugeführte Wärmestrom.
Der Abhitzekessel setzt der Abgasströmung einen Widerstand entgegen. Der Druck am Turbinenaustritt ist deshalb etwas höher als bei der direkten Abströmung über Schalldämmer in die Atmosphäre, was eine geringe Leistungseinbuße bei der Stromerzeugung bedingt.
Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.