Skip to main content

2016 | OriginalPaper | Buchkapitel

BMO: Oscillations, Self-Improvement, Gagliardo Coordinate Spaces, and Reverse Hardy Inequalities

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new approach to classical self improving results for BMO functions is presented. “Coordinate Gagliardo spaces” are introduced and a generalized version of the John-Nirenberg Lemma is proved. Applications are provided.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
We refer to section “Interpolation Theory: Some Basic Inequalities” for more details.
 
2
With the usual modification when q = . 
 
3
Paradoxically, except for section “Bilinear Interpolation”, in this paper we do not discuss interpolation theorems per se. For interpolation theorems involving BMO type of spaces there is a large literature. For articles that are related to the developments in this note I refer, for example, to [11, 36, 43, 55, 76, 84].
 
4
Where f denotes the non-increasing rearrangement of f and \(f^{{\ast}{\ast}}(t) = \frac{1} {t} \int _{0}^{t}f^{{\ast}}(s)ds.\)
 
5
The smallest rearrangement invariant space that contains BMO is e L as was shown by Pustylnik [79].
 
6
Apparently the L(, q) spaces for q <  were first introduced and their usefulness shown in [7]. Note that with the usual definition L(, ) would be L , and L(, q) = { 0}, for q < . The key point here is that the use of the oscillation operator introduces cancellations that make the spaces defined in this fashion nontrivial (cf. section “The Rearrangement Invariant Hull of BMO and Gagliardo Coordinate Spaces”, Example 1).
 
7
Which in turn improves upon the classical exponential integrability result by Trudinger [87].
 
8
Let X be a rearrangement invariant space, Pustylnik [79] has given necessary and sufficient conditions for spaces of functions defined by conditions of the form
$$\displaystyle{\left \Vert \left (f^{{\ast}{\ast}}- f^{{\ast}}\right )t^{-\gamma }\right \Vert _{ X} <\infty }$$
to be linear and normable.
 
9
The improvement is also valid for Besov space inequalities as well (cf. [59]).
 
10
The spaces L(, q) allow to interpolate between L  = L(, 1) and L(, ) ⊂ e L . 
 
11
The earlier work of Herz [36] and Holmstedt [38], that precedes [11], should be also mentioned here.
 
12
Interpreting \((\left \Vert D_{1}(t)f\right \Vert _{X_{1}},\left \Vert D_{2}(t)f\right \Vert _{X_{2}})\) as coordinates on the boundary of a Gagliardo diagram (cf. [12]) it follows readily that, for all ɛ > 0, t > 0, we can find nearly optimal decompositions x = x ɛ (t) + y ɛ (t), such that
$$\displaystyle\begin{array}{rcl} (1-\varepsilon )[K(t,f;\vec{ X}) - t \frac{d} {dt}K(t,f;\vec{ X})] \leq \left \Vert x_{\varepsilon }(t)\right \Vert _{X_{1}} \leq (1+\varepsilon )[K(t,f;\vec{ X}) - t \frac{d} {dt}K(t,f;\vec{ X})]& & {}\end{array}$$
(16)
$$\displaystyle\begin{array}{rcl} (1-\varepsilon ) \frac{d} {dt}K(t,f;\vec{ X}) \leq \left \Vert y_{\varepsilon }(t)\right \Vert _{X_{2}} \leq (1+\varepsilon ) \frac{d} {dt}K(t,f;\vec{ X}).& & {}\end{array}$$
(17)
 
13
BMO(R n ) can be normed by \(\left \vert f\right \vert _{BMO}\) if we identify functions that differ by a constant.
 
14
We cannot resist but to offer here our slight twist to the argument
$$\displaystyle\begin{array}{rcl} \left \Vert fg\right \Vert _{L^{p}}& \leq &\left \Vert f\right \Vert _{L^{2p}}\left \Vert g\right \Vert _{L^{2p}} {}\\ & =& \left \Vert f\right \Vert _{[L^{p},BMO]_{1/2,2p}}\left \Vert g\right \Vert _{[L^{p},BMO]_{1/2,2p}} {}\\ & \preceq & \left \Vert f\right \Vert _{L^{p}}^{1/2}\left \Vert f\right \Vert _{ BMO}^{1/2}\left \Vert g\right \Vert _{ L^{p}}^{1/2}\left \Vert g\right \Vert _{ BMO}^{1/2} {}\\ & \preceq & \left \Vert f\right \Vert _{L^{p}}\left \Vert g\right \Vert _{BMO} + \left \Vert g\right \Vert _{L^{p}}\left \Vert f\right \Vert _{BMO}. {}\\ \end{array}$$
 
15
However, keep in mind the epigraph of [68], originally due Douglas Adams, The Restaurant at the End of the Universe, Tor Books, 1988:“For seven and a half million years, Deep Thought computed and calculated, and in the end announced that the answer was in fact Forty-two—and so another, even bigger, computer had to be built to find out what the actual question was.”
 
16
For more background information, we refer to [9] and [83].
 
17
For a recent new approach to the John-Nirenberg Lemma we refer to [31].
 
18
Note that \(f_{Q_{0},1}^{\#} = f_{Q_{0}}^{\#}.\)
 
19
We shall then call \(\vec{X} = (X_{0},X_{1})\) a “Banach pair”. In general, the space V plays an auxiliary role, since once we know that \(\vec{X}\) is a Banach pair we can use \(\Sigma (\vec{X})\) as the ambient space. In particular, the functional \(K(t,f;\vec{ X})\) is in principle only defined on \(\Sigma (\vec{X}).\) On the other hand, the functional \(f \rightarrow \frac{d} {dt}K(t,f;\vec{ X}),\) can make sense for a larger class of elements than \(\Sigma (\vec{X}).\) This occurs for significant examples: For example, on the interval [0, 1], 
$$\displaystyle{L(1,\infty ) =\{ f:\sup _{t}tf^{{\ast}}(t) <\infty \} \not\subseteq L^{1} + L^{\infty } = L^{1}.}$$
 
20
With the usual modification when q = . 
 
21
Here and in what follows we use the convention 0 = 1. 
 
22
See also [26].
 
23
For more recent developments in extrapolation theory cf. [4].
 
24
For computations of related K-functionals and further references cf. [2, 42].
 
25
Think in terms of a Gagliardo diagram, see, for example, [12, p. 39], [43, 46].
 
26
See also [82], Lesson #3.
 
27
Herz [37] also developed a different technique to extrapolate oscillation rearrangement inequalities for martingale operators.
 
28
(cf. [6, 34, 65, 67]).
 
29
See also [47] for a maximal function approach to oscillation inequalities for the gradient.
 
30
In this example we are not interested on the precise dependence of the constants of equivalence.
 
31
It is an interesting open problem to modify Holmstedt’s method to be able to keep track, in a nearly optimal way, both coordinates in the Gagliardo diagram, when doing reiteration. For more on the computation of Gagliardo coordinate spaces see the forthcoming [74].
 
32
To simplify the computations we model the L p case here. Another simplification is that in this argument we don’t need to be fuzzy about constants.
 
33
In fact, the boundedness of [T, b] for all CZ operators implies that b ∈ BMO (cf. [41])
 
34
I would learn quickly that Mischa’s modesty was legendary.
 
35
From this period I can mention [2325].
 
36
Existence here to be taken in a non mathematical sense. Of course at point in time I did NOT *exist* mathematically!
 
37
In Spanish *Corita* means little Cora.
 
38
Many many years later she told me that by then everyone called her Cora, except Mischa and myself and that she would prefer for me to call her Cora. I said, of course, Corita!
 
39
She had a membership at IAS herself that year.
 
40
Harmonic analysts trained in the 1960s had a special place in their hearts for Interpolation theory. It was after all a theory to which the great masters of the Chicago school (e.g., Calderón, Stein, Zygmund) had made fundamental contributions.
 
41
I mean using TeX!
 
Literatur
1.
3.
Zurück zum Zitat N. Arcozzi, R. Rochberg, E. Sawyer, B.D. Wick, Potential theory on trees, graphs and Ahlfors-regular metric spaces. Potential Anal. 41, 317–366 (2014)MathSciNetCrossRefMATH N. Arcozzi, R. Rochberg, E. Sawyer, B.D. Wick, Potential theory on trees, graphs and Ahlfors-regular metric spaces. Potential Anal. 41, 317–366 (2014)MathSciNetCrossRefMATH
4.
Zurück zum Zitat S. Astashkin, K. Lykov, Extrapolation Description of Rearrangement Invariant Spaces and Related Problems. Banach and Function Spaces III (Yokohama Publishers, Yokohama, 2011), pp. 1–52MATH S. Astashkin, K. Lykov, Extrapolation Description of Rearrangement Invariant Spaces and Related Problems. Banach and Function Spaces III (Yokohama Publishers, Yokohama, 2011), pp. 1–52MATH
5.
Zurück zum Zitat R.J. Bagby, D.S. Kurtz, A rearranged good-λ inequality. Trans. Am. Math. Soc. 293, 71–81 (1986)MathSciNetMATH R.J. Bagby, D.S. Kurtz, A rearranged good-λ inequality. Trans. Am. Math. Soc. 293, 71–81 (1986)MathSciNetMATH
6.
Zurück zum Zitat D. Bakry, T. Coulhon, M. Ledoux, L. Saloff-Coste, Sobolev inequalities in disguise. Indiana Univ. Math. J. 44, 1033–1074 (1995)MathSciNetCrossRefMATH D. Bakry, T. Coulhon, M. Ledoux, L. Saloff-Coste, Sobolev inequalities in disguise. Indiana Univ. Math. J. 44, 1033–1074 (1995)MathSciNetCrossRefMATH
7.
Zurück zum Zitat J. Bastero, M. Milman, F.J. Ruiz Blasco, A note on L(∞, q) spaces and Sobolev embeddings. Indiana Univ. Math. J. 52, 1215–1230 (2003)MathSciNetCrossRefMATH J. Bastero, M. Milman, F.J. Ruiz Blasco, A note on L(∞, q) spaces and Sobolev embeddings. Indiana Univ. Math. J. 52, 1215–1230 (2003)MathSciNetCrossRefMATH
8.
9.
Zurück zum Zitat C. Bennett, R. Sharpley, Interpolation of Operators. Pure and Applied Mathematics, vol. 129 (Academic Press, Boston, 1988) C. Bennett, R. Sharpley, Interpolation of Operators. Pure and Applied Mathematics, vol. 129 (Academic Press, Boston, 1988)
10.
Zurück zum Zitat C. Bennett, R. Sharpley, Weak-type inequalities for H p and BMO, in Harmonic Analysis in Euclidean Spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978). Proceedings of Symposia in Pure Mathematics, Part 1, vol. XXXV (American Mathematical Society, Providence, 1979), pp. 201–229 C. Bennett, R. Sharpley, Weak-type inequalities for H p and BMO, in Harmonic Analysis in Euclidean Spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978). Proceedings of Symposia in Pure Mathematics, Part 1, vol. XXXV (American Mathematical Society, Providence, 1979), pp. 201–229
13.
Zurück zum Zitat H. Brezis, S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities. Commun. Partial Differ. Equ. 5, 773–789 (1980)MathSciNetCrossRefMATH H. Brezis, S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities. Commun. Partial Differ. Equ. 5, 773–789 (1980)MathSciNetCrossRefMATH
14.
Zurück zum Zitat A.P. Calderón, Intermediate spaces and interpolation, the complex method. Stud. Math. 24, 113–190 (1964)MathSciNetMATH A.P. Calderón, Intermediate spaces and interpolation, the complex method. Stud. Math. 24, 113–190 (1964)MathSciNetMATH
15.
Zurück zum Zitat A.P. Calderón, Spaces between L 1 and L ∞ and the theorem of Marcinkiewicz. Stud. Math. 26, 273–299 (1966).MathSciNetMATH A.P. Calderón, Spaces between L 1 and L and the theorem of Marcinkiewicz. Stud. Math. 26, 273–299 (1966).MathSciNetMATH
17.
Zurück zum Zitat D.L. Burkholder, R.F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math. 124, 249–304 (1970)MathSciNetCrossRefMATH D.L. Burkholder, R.F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math. 124, 249–304 (1970)MathSciNetCrossRefMATH
18.
Zurück zum Zitat D.L. Burkholder, R.F. Gundy, Distribution function inequalities for the area integrals. Stud. Math. 44, 527–544 (1972)MathSciNetMATH D.L. Burkholder, R.F. Gundy, Distribution function inequalities for the area integrals. Stud. Math. 44, 527–544 (1972)MathSciNetMATH
21.
Zurück zum Zitat R.R. Coifman, C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals. Stud. Math. 51, 241–250 (1974)MathSciNetMATH R.R. Coifman, C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals. Stud. Math. 51, 241–250 (1974)MathSciNetMATH
22.
Zurück zum Zitat R.R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables. Ann. Math. 103, 611–635 (1976)MathSciNetCrossRefMATH R.R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables. Ann. Math. 103, 611–635 (1976)MathSciNetCrossRefMATH
23.
Zurück zum Zitat M. Cotlar, C. Sadosky, Transformée de Hilbert, Théorème de Bochner et le Problème des Moments I. C. R. Acad. Sci. Paris Ser. A-B 285 (1977) M. Cotlar, C. Sadosky, Transformée de Hilbert, Théorème de Bochner et le Problème des Moments I. C. R. Acad. Sci. Paris Ser. A-B 285 (1977)
24.
Zurück zum Zitat M. Cotlar, C. Sadosky, Transformée de Hilbert, Théorème de Bochner et le Problème des Moments II. C. R. Acad. Sci. Paris Ser. A-B 285 (1977) M. Cotlar, C. Sadosky, Transformée de Hilbert, Théorème de Bochner et le Problème des Moments II. C. R. Acad. Sci. Paris Ser. A-B 285 (1977)
25.
Zurück zum Zitat M. Cotlar, C. Sadosky, On the Helson-Szegö theorem and a related class of modified Toeplitz kernels, in Harmonic Analysis in Euclidean Spaces. Proceedings of Symposia in Pure Mathematics, vol. 35 (American Mathematical Society, Providence, 1979), pp. 383–407 M. Cotlar, C. Sadosky, On the Helson-Szegö theorem and a related class of modified Toeplitz kernels, in Harmonic Analysis in Euclidean Spaces. Proceedings of Symposia in Pure Mathematics, vol. 35 (American Mathematical Society, Providence, 1979), pp. 383–407
26.
Zurück zum Zitat M. Cwikel, S. Janson, Real and complex interpolation methods for finite and infinite families of Banach spaces. Adv. Math. 66, 234–290 (1987)MathSciNetCrossRefMATH M. Cwikel, S. Janson, Real and complex interpolation methods for finite and infinite families of Banach spaces. Adv. Math. 66, 234–290 (1987)MathSciNetCrossRefMATH
27.
28.
Zurück zum Zitat M. Cwikel, N. Kalton, M. Milman, R. Rochberg, A unified theory of commutator estimates for a class of interpolation methods. Adv. Math. 169, 241–312 (2002)MathSciNetCrossRefMATH M. Cwikel, N. Kalton, M. Milman, R. Rochberg, A unified theory of commutator estimates for a class of interpolation methods. Adv. Math. 169, 241–312 (2002)MathSciNetCrossRefMATH
29.
Zurück zum Zitat M. Cwikel, B. Jawerth, M. Milman, A note on extrapolation of inequalities. Preprint (2010) M. Cwikel, B. Jawerth, M. Milman, A note on extrapolation of inequalities. Preprint (2010)
31.
Zurück zum Zitat M. Cwikel, Y. Sagher, P. Shvartsman, A Geometrical/Combinatorical Question with Implications for the John-Nirenberg Inequality for BMO Functions. Banach Center Publications, vol. 95 (Polish Academy of Sciences, Warszawa, 2011), pp. 45–53 M. Cwikel, Y. Sagher, P. Shvartsman, A Geometrical/Combinatorical Question with Implications for the John-Nirenberg Inequality for BMO Functions. Banach Center Publications, vol. 95 (Polish Academy of Sciences, Warszawa, 2011), pp. 45–53
33.
Zurück zum Zitat A.M. Garsia, E. Rodemich, Monotonicity of certain functionals under rearrangements. Ann. Inst. Fourier (Grenoble) 24, 67–116 (1974)MathSciNetCrossRefMATH A.M. Garsia, E. Rodemich, Monotonicity of certain functionals under rearrangements. Ann. Inst. Fourier (Grenoble) 24, 67–116 (1974)MathSciNetCrossRefMATH
34.
Zurück zum Zitat P. Hajlasz, Sobolev inequalities, truncation method, and John domains, in Papers on Analysis, Rep. Univ. Jyväskylä Dep. Math. Stat., vol. 83 (Univ. Jyväskylä, Jyväskylä, 2001), pp. 109–126 P. Hajlasz, Sobolev inequalities, truncation method, and John domains, in Papers on Analysis, Rep. Univ. Jyväskylä Dep. Math. Stat., vol. 83 (Univ. Jyväskylä, Jyväskylä, 2001), pp. 109–126
36.
Zurück zum Zitat C. Herz, A Best Possible Marcinkiewicz Theorem with Applications to Martingales (Mc Gill University, Montréal, 1974) C. Herz, A Best Possible Marcinkiewicz Theorem with Applications to Martingales (Mc Gill University, Montréal, 1974)
40.
Zurück zum Zitat P. Honzík, B.J. Jaye, On the good-λ inequalities for nonlinear potentials. Proc. Am. Math. Soc. 140, 4167–4180 (2012)CrossRefMATH P. Honzík, B.J. Jaye, On the good-λ inequalities for nonlinear potentials. Proc. Am. Math. Soc. 140, 4167–4180 (2012)CrossRefMATH
42.
Zurück zum Zitat B. Jawerth, The K-functional for H 1 and BMO. Proc. Am. Math. Soc. 92, 67–71 (1984) B. Jawerth, The K-functional for H 1 and BMO. Proc. Am. Math. Soc. 92, 67–71 (1984)
44.
Zurück zum Zitat B. Jawerth, M. Milman, Extrapolation theory with applications. Mem. Am. Math. Soc. 89 (440) (1991) B. Jawerth, M. Milman, Extrapolation theory with applications. Mem. Am. Math. Soc. 89 (440) (1991)
45.
Zurück zum Zitat B. Jawerth, M. Milman, Function Spaces, Inequalities and Interpolation. Lectures on Optimization, Image Processing and Interpolation Theory (Spring School on Analysis, Paseky, 2007) B. Jawerth, M. Milman, Function Spaces, Inequalities and Interpolation. Lectures on Optimization, Image Processing and Interpolation Theory (Spring School on Analysis, Paseky, 2007)
47.
Zurück zum Zitat J. Kalis, M. Milman, Symmetrization and sharp Sobolev inequalities in metric spaces. Rev. Mat. Complutense 22, 499–515 (2009)MathSciNetMATH J. Kalis, M. Milman, Symmetrization and sharp Sobolev inequalities in metric spaces. Rev. Mat. Complutense 22, 499–515 (2009)MathSciNetMATH
48.
49.
Zurück zum Zitat G.E. Karadzhov, M. Milman, J. Xiao, Limits of higher-order Besov spaces and sharp reiteration theorems. J. Funct. Anal. 221, 323–339 (2005)MathSciNetCrossRefMATH G.E. Karadzhov, M. Milman, J. Xiao, Limits of higher-order Besov spaces and sharp reiteration theorems. J. Funct. Anal. 221, 323–339 (2005)MathSciNetCrossRefMATH
51.
Zurück zum Zitat H. König, V. Milman, Characterizing the derivative and the entropy function by the Leibniz rule, with an appendix by D. Faifman. J. Funct. Anal. 261, 1325–1344 (2011)CrossRefMATH H. König, V. Milman, Characterizing the derivative and the entropy function by the Leibniz rule, with an appendix by D. Faifman. J. Funct. Anal. 261, 1325–1344 (2011)CrossRefMATH
52.
53.
Zurück zum Zitat H. Kozono, H. Wadade, Remarks on Gagliardo-Nirenberg type inequality with critical Sobolev space and BMO. Math. Z. 259, 935–950 (2008)MathSciNetCrossRefMATH H. Kozono, H. Wadade, Remarks on Gagliardo-Nirenberg type inequality with critical Sobolev space and BMO. Math. Z. 259, 935–950 (2008)MathSciNetCrossRefMATH
54.
Zurück zum Zitat N. Krugljak, L. Maligranda, L.E. Persson, An elementary approach to the fractional Hardy inequality. Proc. Am. Math. Soc. 128, 727–734 (2000)MathSciNetCrossRefMATH N. Krugljak, L. Maligranda, L.E. Persson, An elementary approach to the fractional Hardy inequality. Proc. Am. Math. Soc. 128, 727–734 (2000)MathSciNetCrossRefMATH
55.
Zurück zum Zitat N. Kruglyak, Y. Sagher, P. Shvartsman, Weak-type operators and the strong fundamental lemma of real interpolation theory. Stud. Math. 170, 173–201 (2005)MathSciNetCrossRefMATH N. Kruglyak, Y. Sagher, P. Shvartsman, Weak-type operators and the strong fundamental lemma of real interpolation theory. Stud. Math. 170, 173–201 (2005)MathSciNetCrossRefMATH
57.
Zurück zum Zitat M. Ledoux, Isopérimétrie et inégalitées de Sobolev logarithmiques gaussiennes. C. R. Acad. Sci. Paris 306, 79–92 (1988)MathSciNetMATH M. Ledoux, Isopérimétrie et inégalitées de Sobolev logarithmiques gaussiennes. C. R. Acad. Sci. Paris 306, 79–92 (1988)MathSciNetMATH
58.
Zurück zum Zitat G. Leoni, A First Course in Sobolev Spaces. Graduate Studies in Mathematics, vol. 105 (American Mathematical Society, New York, 2009) G. Leoni, A First Course in Sobolev Spaces. Graduate Studies in Mathematics, vol. 105 (American Mathematical Society, New York, 2009)
59.
60.
Zurück zum Zitat J. Martin, M. Milman, A note on Sobolev inequalities and limits of Lorentz spaces, in Interpolation Theory and Applications, ed. by L. De Carli et al. Contemporary Mathematics, vol. 445 (American Mathematical Society, Providence, 2007), pp. 237–245 J. Martin, M. Milman, A note on Sobolev inequalities and limits of Lorentz spaces, in Interpolation Theory and Applications, ed. by L. De Carli et al. Contemporary Mathematics, vol. 445 (American Mathematical Society, Providence, 2007), pp. 237–245
61.
Zurück zum Zitat J. Martin, M. Milman, An abstract Coifman-Rochberg-Weiss commutator theorem, in Classical Analysis and Applications: A Conference in Honor of Daniel Waterman, ed. by L. De Carli, K. Kazarian, M. Milman (World Scientific, Singapore, 2008), pp. 141–160 J. Martin, M. Milman, An abstract Coifman-Rochberg-Weiss commutator theorem, in Classical Analysis and Applications: A Conference in Honor of Daniel Waterman, ed. by L. De Carli, K. Kazarian, M. Milman (World Scientific, Singapore, 2008), pp. 141–160
62.
Zurück zum Zitat J. Martin, M. Milman, Isoperimetry and symmetrization for logarithmic Sobolev inequalities. J. Funct. Anal. 256, 149–178 (2009)MathSciNetCrossRefMATH J. Martin, M. Milman, Isoperimetry and symmetrization for logarithmic Sobolev inequalities. J. Funct. Anal. 256, 149–178 (2009)MathSciNetCrossRefMATH
63.
Zurück zum Zitat J. Martin, M. Milman, Sobolev inequalities, rearrangements, isoperimetry and interpolation spaces, in Concentration, Functional Inequalities and Isoperimetry, ed. by C. Houdre et al. Contemporary Mathematics, vol. 545 (American Mathematical Society, Providence, 2011), pp. 167–193 J. Martin, M. Milman, Sobolev inequalities, rearrangements, isoperimetry and interpolation spaces, in Concentration, Functional Inequalities and Isoperimetry, ed. by C. Houdre et al. Contemporary Mathematics, vol. 545 (American Mathematical Society, Providence, 2011), pp. 167–193
64.
Zurück zum Zitat J. Martin, M. Milman, Towards a unified theory of Sobolev inequalities, in Special Functions, Partial Differential Equations, and Harmonic Analysis, ed. by A.M. Stokolos et al. Springer Proceedings in Mathematics & Statistics, vol. 108 (Springer, Cham, 2014), pp. 163–201 J. Martin, M. Milman, Towards a unified theory of Sobolev inequalities, in Special Functions, Partial Differential Equations, and Harmonic Analysis, ed. by A.M. Stokolos et al. Springer Proceedings in Mathematics & Statistics, vol. 108 (Springer, Cham, 2014), pp. 163–201
65.
Zurück zum Zitat J. Martin, M. Milman, E. Pustylnik, Sobolev inequalities: symmetrization and self improvement via truncation. J. Funct. Anal. 252, 677–695 (2007)MathSciNetCrossRefMATH J. Martin, M. Milman, E. Pustylnik, Sobolev inequalities: symmetrization and self improvement via truncation. J. Funct. Anal. 252, 677–695 (2007)MathSciNetCrossRefMATH
66.
Zurück zum Zitat M. Mastylo, M. Milman, Interpolation of real method spaces via some ideals of operators. Stud. Math. 136, 17–35 (1999)MathSciNetMATH M. Mastylo, M. Milman, Interpolation of real method spaces via some ideals of operators. Stud. Math. 136, 17–35 (1999)MathSciNetMATH
67.
Zurück zum Zitat V. G. Maz’ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 342, Second, revised and augmented edition (Springer, Heidelberg, 2011) V. G. Maz’ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 342, Second, revised and augmented edition (Springer, Heidelberg, 2011)
68.
Zurück zum Zitat R. Metzler, J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, R161–R208 (2004)MathSciNetCrossRefMATH R. Metzler, J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, R161–R208 (2004)MathSciNetCrossRefMATH
69.
70.
Zurück zum Zitat M. Milman, Notes on limits of Sobolev spaces and the continuity of interpolation scales. Trans. Am. Math. Soc. 357, 3425–3442 (2005)MathSciNetCrossRefMATH M. Milman, Notes on limits of Sobolev spaces and the continuity of interpolation scales. Trans. Am. Math. Soc. 357, 3425–3442 (2005)MathSciNetCrossRefMATH
72.
Zurück zum Zitat M. Milman, Self improving inequalities via penalty methods, in High Dimensional Probability VII, Corsica (2014) M. Milman, Self improving inequalities via penalty methods, in High Dimensional Probability VII, Corsica (2014)
73.
Zurück zum Zitat M. Milman, Extrapolation: three lectures in Barcelona. Lecture Notes based on a 2013 course given at Univ. Autonoma Barcelona, in preparation M. Milman, Extrapolation: three lectures in Barcelona. Lecture Notes based on a 2013 course given at Univ. Autonoma Barcelona, in preparation
74.
Zurück zum Zitat M. Milman, BMO: Marcinkiewicz spaces, the E functional and Reiteration, in preparation M. Milman, BMO: Marcinkiewicz spaces, the E functional and Reiteration, in preparation
77.
Zurück zum Zitat J. Neveu, Martingales a Temps Discret (Dunod, Paris, 1972) J. Neveu, Martingales a Temps Discret (Dunod, Paris, 1972)
78.
Zurück zum Zitat V.I. Ovchinnikov, The method of orbits in interpolation theory. Math. Rep. 1, 349–516 (1984)MathSciNetMATH V.I. Ovchinnikov, The method of orbits in interpolation theory. Math. Rep. 1, 349–516 (1984)MathSciNetMATH
79.
Zurück zum Zitat E. Pustylnik, On a rearrangement-invariant function set that appears in optimal Sobolev embeddings. J. Math. Anal. Appl. 344, 788–798 (2008)MathSciNetCrossRefMATH E. Pustylnik, On a rearrangement-invariant function set that appears in optimal Sobolev embeddings. J. Math. Anal. Appl. 344, 788–798 (2008)MathSciNetCrossRefMATH
81.
Zurück zum Zitat R. Rochberg, Uses of commutator theorems in analysis, in Interpolation Theory and Applications. Contemporary Mathematics, vol. 445 (American Mathematical Society, Providence, 2007), pp. 277–295 R. Rochberg, Uses of commutator theorems in analysis, in Interpolation Theory and Applications. Contemporary Mathematics, vol. 445 (American Mathematical Society, Providence, 2007), pp. 277–295
83.
Zurück zum Zitat C. Sadosky, Interpolation of Operators and Singular Integrals. An Introduction to Harmonic Analysis. Monographs and Textbooks in Pure and Applied Mathematics, vol. 53 (Marcel Dekker, New York, 1979) C. Sadosky, Interpolation of Operators and Singular Integrals. An Introduction to Harmonic Analysis. Monographs and Textbooks in Pure and Applied Mathematics, vol. 53 (Marcel Dekker, New York, 1979)
84.
Zurück zum Zitat Y. Sagher, An application of the approximation functional in interpolation theory, in Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981). Wadsworth Mathematics Series (Wadsworth, Belmont, 1983), pp. 802–809 Y. Sagher, An application of the approximation functional in interpolation theory, in Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981). Wadsworth Mathematics Series (Wadsworth, Belmont, 1983), pp. 802–809
85.
Zurück zum Zitat Y. Sagher, P. Shvartsman, Rearrangement-function inequalities and interpolationtheory. J. Approx. Theory 119, 214–251 (2002)MathSciNetCrossRefMATH Y. Sagher, P. Shvartsman, Rearrangement-function inequalities and interpolationtheory. J. Approx. Theory 119, 214–251 (2002)MathSciNetCrossRefMATH
86.
Zurück zum Zitat G. Talenti, Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4, 697–718 (1976)MathSciNetMATH G. Talenti, Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4, 697–718 (1976)MathSciNetMATH
87.
Zurück zum Zitat N.S. Trudinger, On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)MathSciNetMATH N.S. Trudinger, On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)MathSciNetMATH
Metadaten
Titel
BMO: Oscillations, Self-Improvement, Gagliardo Coordinate Spaces, and Reverse Hardy Inequalities
verfasst von
Mario Milman
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-30961-3_13