Skip to main content
Erschienen in: Journal of Materials Science 20/2020

13.04.2020 | Ceramics

Bond analysis of novel MnZrTa2O8 microwave dielectric ceramics with monoclinic structure

verfasst von: Yun Zhang, Shihua Ding, Chao Li, Tianxiu Song, Yingchun Zhang

Erschienen in: Journal of Materials Science | Ausgabe 20/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new type of ceramic, namely MnZrTa2O8, was synthesized after sintering at high temperature in this work. The possible dielectric loss mechanism was discussed by Raman spectroscopy and chemical bond theory. X-ray diffraction indicated that MnZrTa2O8 formed through a reaction between ZrO2 and intermediate MnTa2O6. After sintering at 1350 °C, a monoclinic structure with cell parameters a = 4.8370(3) Å, b = 5.7163(1) Å, c = 5.1398(5) Å, β = 91.7219° was gained for ceramic. Among all bonds, Ta–O with the greatest bond ionicity and lattice energy was the dominant factor that influenced the microwave dielectric properties. The temperature coefficient of the resonant frequency τf changed from − 50.55 to − 41.21 ppm/ °C, which was related to the lattice energy. The effect of porosity on dielectric loss was also checked and found to be significant. MnZrTa2O8 ceramic exhibited relative permittivity εr ~ 23.0 and enhanced quality factor Q × f~48103 GHz (at 8.97 GHz), which provided a promising candidate for electric components.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sebastian MT (2008) Dielectric materials for wireless communications. Elsevier, Oxford Sebastian MT (2008) Dielectric materials for wireless communications. Elsevier, Oxford
2.
Zurück zum Zitat Yadav P, Sinha E (2019) Structural, photophysical and microwave dielectric properties of α-ZnMoO4 phosphor. J Alloys Compd 795:446–452CrossRef Yadav P, Sinha E (2019) Structural, photophysical and microwave dielectric properties of α-ZnMoO4 phosphor. J Alloys Compd 795:446–452CrossRef
3.
Zurück zum Zitat Suresh EK, Ratheesh R (2019) Structure and microwave dielectric properties of glass free low temperature co-firable SrMV2O7 (M = Mg, Zn) ceramics. J Alloys Compd 808:151641–151648CrossRef Suresh EK, Ratheesh R (2019) Structure and microwave dielectric properties of glass free low temperature co-firable SrMV2O7 (M = Mg, Zn) ceramics. J Alloys Compd 808:151641–151648CrossRef
4.
Zurück zum Zitat Sebastian MT, Ubic R, Jantunen H (2017) Microwave materials and applications. Wiley, ChichesterCrossRef Sebastian MT, Ubic R, Jantunen H (2017) Microwave materials and applications. Wiley, ChichesterCrossRef
5.
Zurück zum Zitat Ichinose N, Shimada T (2006) Effect of grain size and secondary phase on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 and Ba ([Mg, Zn]1/3Ta2/3)O3 systems. J Eur Ceram Soc 26:1755–1759CrossRef Ichinose N, Shimada T (2006) Effect of grain size and secondary phase on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 and Ba ([Mg, Zn]1/3Ta2/3)O3 systems. J Eur Ceram Soc 26:1755–1759CrossRef
6.
Zurück zum Zitat Ramarao SD, Murthy VRK (2013) Crystal structure refinement and microwave dielectric properties of new low dielectric loss AZrNb2O8 (A: Mn, Zn, Mg and Co) ceramics. Scr Mater 69:274–277CrossRef Ramarao SD, Murthy VRK (2013) Crystal structure refinement and microwave dielectric properties of new low dielectric loss AZrNb2O8 (A: Mn, Zn, Mg and Co) ceramics. Scr Mater 69:274–277CrossRef
7.
Zurück zum Zitat Tang X, Yang H, Zhang QL, Zhou JH (2014) Low-temperature sintering and microwave dielectric properties of ZnZrNb2O8 ceramics with BaCu(B2O5) addition. Ceram Int 40:12875–12881CrossRef Tang X, Yang H, Zhang QL, Zhou JH (2014) Low-temperature sintering and microwave dielectric properties of ZnZrNb2O8 ceramics with BaCu(B2O5) addition. Ceram Int 40:12875–12881CrossRef
8.
Zurück zum Zitat Wu HT, Bi JX (2016) Synthesis, characterization, and microwave dielectric properties of monoclinal structure ZnZrNb2O8 ceramics through the aqueous sol-gel process. J Mater Sci: Mater Electron 27:3474–3480 Wu HT, Bi JX (2016) Synthesis, characterization, and microwave dielectric properties of monoclinal structure ZnZrNb2O8 ceramics through the aqueous sol-gel process. J Mater Sci: Mater Electron 27:3474–3480
9.
Zurück zum Zitat Wu MJ, Zhang YC, Xiang MQ (2018) Structural, Raman spectroscopic and microwave dielectric studies on (1 − x)NiZrNb2O8–xZnTa2O6. J Mater Sci: Mater Electron 29:14471–14478 Wu MJ, Zhang YC, Xiang MQ (2018) Structural, Raman spectroscopic and microwave dielectric studies on (1 − x)NiZrNb2O8xZnTa2O6. J Mater Sci: Mater Electron 29:14471–14478
10.
Zurück zum Zitat Lyu XS, Li LX, Zhang S (2016) A new low-loss dielectric material ZnZrTa2O8 for microwave devices. J Eur Ceram Soc 36:931–935CrossRef Lyu XS, Li LX, Zhang S (2016) A new low-loss dielectric material ZnZrTa2O8 for microwave devices. J Eur Ceram Soc 36:931–935CrossRef
11.
Zurück zum Zitat Lyu XS, Li LX, Sun H, Zhang S, Li S (2016) High-Q microwave dielectrics in wolframite magnesium zirconium tantalite ceramics. Ceram Int 42:2036–2040CrossRef Lyu XS, Li LX, Sun H, Zhang S, Li S (2016) High-Q microwave dielectrics in wolframite magnesium zirconium tantalite ceramics. Ceram Int 42:2036–2040CrossRef
12.
Zurück zum Zitat Lin YJ, Wang SF, Lai BC, Liu YX, Chang YL, Yang JR (2017) Densification, microstructure evolution, and microwave dielectric properties of Mg1−xCaxZrTa2O8 ceramics. J Eur Ceram Soc 37:2825–2831CrossRef Lin YJ, Wang SF, Lai BC, Liu YX, Chang YL, Yang JR (2017) Densification, microstructure evolution, and microwave dielectric properties of Mg1−xCaxZrTa2O8 ceramics. J Eur Ceram Soc 37:2825–2831CrossRef
13.
Zurück zum Zitat Zhang Y, Ding SH, Song TX (2019) Microwave dielectric properties of temperature stable MO–ZrO2–Ta2O5 ceramics. J Alloys Compd 798:194–203CrossRef Zhang Y, Ding SH, Song TX (2019) Microwave dielectric properties of temperature stable MO–ZrO2–Ta2O5 ceramics. J Alloys Compd 798:194–203CrossRef
15.
Zurück zum Zitat Chu YQ, Zhao LP, Liu Y, Liu P (2019) MgTiTa2O8: novel middle-permittivity microwave dielectric ceramic with trirutile-type structure. Ceram Int 45:23853–23856CrossRef Chu YQ, Zhao LP, Liu Y, Liu P (2019) MgTiTa2O8: novel middle-permittivity microwave dielectric ceramic with trirutile-type structure. Ceram Int 45:23853–23856CrossRef
16.
Zurück zum Zitat Yang HY, Zhang SR, Chen YW, Yang HC, Yuan Y, Li EZ (2019) Crystal chemistry, Raman spectra, and bond characteristics of trirutile-type Co0.5Ti0.5TaO4 microwave dielectric ceramics. Inorg Chem 58:968–976CrossRef Yang HY, Zhang SR, Chen YW, Yang HC, Yuan Y, Li EZ (2019) Crystal chemistry, Raman spectra, and bond characteristics of trirutile-type Co0.5Ti0.5TaO4 microwave dielectric ceramics. Inorg Chem 58:968–976CrossRef
17.
Zurück zum Zitat Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Cryst 34:210–213CrossRef Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Cryst 34:210–213CrossRef
18.
Zurück zum Zitat Kobayashiy Y, Katoh M (1985) Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. IEEE Trans Microw Theory 33:586–592CrossRef Kobayashiy Y, Katoh M (1985) Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. IEEE Trans Microw Theory 33:586–592CrossRef
19.
Zurück zum Zitat Yang HY, Zhang SR, Li YP et al (2020) Investigations of dielectric properties of wolframite A0.5Zr0.5NbO4 ceramics by bond theory and far-infrared spectroscopy. Ceram Int 46:3688–3694CrossRef Yang HY, Zhang SR, Li YP et al (2020) Investigations of dielectric properties of wolframite A0.5Zr0.5NbO4 ceramics by bond theory and far-infrared spectroscopy. Ceram Int 46:3688–3694CrossRef
20.
Zurück zum Zitat Rousseau DL, Bauman RP, Porto SPS (1981) Normal mode determination in crystals. J Raman Spectrosc 10:253–290CrossRef Rousseau DL, Bauman RP, Porto SPS (1981) Normal mode determination in crystals. J Raman Spectrosc 10:253–290CrossRef
21.
Zurück zum Zitat Murtaza G, Hussain SS, Rehman NU, Naseer S, Shafiq M, Zakaullah M (2011) Carburizing of zirconium using a low energy Mather type plasma focus. Surf Coat Technol 205:3012–3019CrossRef Murtaza G, Hussain SS, Rehman NU, Naseer S, Shafiq M, Zakaullah M (2011) Carburizing of zirconium using a low energy Mather type plasma focus. Surf Coat Technol 205:3012–3019CrossRef
22.
Zurück zum Zitat Zhang H, Diao CL, Liu SL, Jiang SZ, Shi F, Jing XP (2014) X-ray diffraction and Raman scattering investigations on Ba[Mg(1-x)/3ZrxTa2(1-x)/3]O3 solid solutions. J Alloys Compd 587:717–723CrossRef Zhang H, Diao CL, Liu SL, Jiang SZ, Shi F, Jing XP (2014) X-ray diffraction and Raman scattering investigations on Ba[Mg(1-x)/3ZrxTa2(1-x)/3]O3 solid solutions. J Alloys Compd 587:717–723CrossRef
23.
Zurück zum Zitat Iliev MN, Abrashev MV, Lee HG, Popov VN, Sun YY, Thomsen C, Meng RL, Chu CW (1998) Raman active phonons in orthorhombic YMnO3 and LaMnO3. J Phys Chem Solids 59:1982–1984CrossRef Iliev MN, Abrashev MV, Lee HG, Popov VN, Sun YY, Thomsen C, Meng RL, Chu CW (1998) Raman active phonons in orthorhombic YMnO3 and LaMnO3. J Phys Chem Solids 59:1982–1984CrossRef
24.
Zurück zum Zitat Julien C, Massot M, Hadjean RB, Franger S, Bach S, Pereira-Ramos JP (2003) Raman spectra of birnessite manganese dioxides. Solid State Ionics 159:345–356CrossRef Julien C, Massot M, Hadjean RB, Franger S, Bach S, Pereira-Ramos JP (2003) Raman spectra of birnessite manganese dioxides. Solid State Ionics 159:345–356CrossRef
25.
Zurück zum Zitat Phillips JC, Van Vechten JA (1969) Dielectric classification of crystal structures, ionization potentials, and band structures. Phys Rev Lett 22:705–708CrossRef Phillips JC, Van Vechten JA (1969) Dielectric classification of crystal structures, ionization potentials, and band structures. Phys Rev Lett 22:705–708CrossRef
26.
Zurück zum Zitat Phillips J (1970) Ionicity of the chemical bond in crystals. Rev Mod Phys 42:317–356CrossRef Phillips J (1970) Ionicity of the chemical bond in crystals. Rev Mod Phys 42:317–356CrossRef
27.
Zurück zum Zitat Wu ZJ, Meng QB, Zhang SY (1998) Semiempirical study on the valences of Cu and bond covalency in Y1−xCaxBa2Cu3O6+y. Phys Rev B 58:958–962CrossRef Wu ZJ, Meng QB, Zhang SY (1998) Semiempirical study on the valences of Cu and bond covalency in Y1−xCaxBa2Cu3O6+y. Phys Rev B 58:958–962CrossRef
28.
Zurück zum Zitat Batsanov SS (1982) Dielectric methods of studying the chemical bond and the concept of electronegativity. Russ Chem Rev 51:684–697CrossRef Batsanov SS (1982) Dielectric methods of studying the chemical bond and the concept of electronegativity. Russ Chem Rev 51:684–697CrossRef
29.
Zurück zum Zitat Meng QB, Wu ZJ, Zhang SY (1998) Evaluation of the energy barrier distribution in many-particle systems using the path integral approach. Phys Condens Mater 10:85–88CrossRef Meng QB, Wu ZJ, Zhang SY (1998) Evaluation of the energy barrier distribution in many-particle systems using the path integral approach. Phys Condens Mater 10:85–88CrossRef
30.
Zurück zum Zitat Shannon RD (1993) Dielectric polarizabilities of ions in oxides and fluorides. J Appl Phys 73:348–366CrossRef Shannon RD (1993) Dielectric polarizabilities of ions in oxides and fluorides. J Appl Phys 73:348–366CrossRef
31.
Zurück zum Zitat Kim WS, Kim TH, Kim ES, Yoon KH (1998) Microwave dielectric properties and far reflectivity spectra of the (Zr0.8Sn0.2)TiO4 ceramics with additives. Jpn J Appl Phys 37:5367–5371CrossRef Kim WS, Kim TH, Kim ES, Yoon KH (1998) Microwave dielectric properties and far reflectivity spectra of the (Zr0.8Sn0.2)TiO4 ceramics with additives. Jpn J Appl Phys 37:5367–5371CrossRef
32.
Zurück zum Zitat Jenkins HDB, Tudela D, Glasser L (2002) Lattice potential energy estimation for complex ionic salts from density measurements. Inorg Chem 41:2364–2367CrossRef Jenkins HDB, Tudela D, Glasser L (2002) Lattice potential energy estimation for complex ionic salts from density measurements. Inorg Chem 41:2364–2367CrossRef
33.
Zurück zum Zitat Liu DT, Zhang SY, Wu ZJ (2003) Lattice energy estimation for inorganic ionic crystals. Inorg Chem 42:2465–2469CrossRef Liu DT, Zhang SY, Wu ZJ (2003) Lattice energy estimation for inorganic ionic crystals. Inorg Chem 42:2465–2469CrossRef
34.
Zurück zum Zitat Zhao YG, Zhang P (2015) Phase composition, crystal structure, complex chemical bond theory and microwave dielectric properties of high-Q materials in a (Nd1−xYx)NbO4 system. RSC Adv 5:97746–97754CrossRef Zhao YG, Zhang P (2015) Phase composition, crystal structure, complex chemical bond theory and microwave dielectric properties of high-Q materials in a (Nd1−xYx)NbO4 system. RSC Adv 5:97746–97754CrossRef
35.
Zurück zum Zitat Sanderson RT (1983) Electronegativity and bond energy. J Am Chem Soc 105:2259–2261CrossRef Sanderson RT (1983) Electronegativity and bond energy. J Am Chem Soc 105:2259–2261CrossRef
36.
Zurück zum Zitat Sanderson RT (1968) Multiple and single bond energies in inorganic molecules. Inorg Nucl Chem 30:375–393CrossRef Sanderson RT (1968) Multiple and single bond energies in inorganic molecules. Inorg Nucl Chem 30:375–393CrossRef
37.
Zurück zum Zitat Luo YR (2007) Comprehensive handbook of chemical bond energies. CRC Press, Boca RatonCrossRef Luo YR (2007) Comprehensive handbook of chemical bond energies. CRC Press, Boca RatonCrossRef
Metadaten
Titel
Bond analysis of novel MnZrTa2O8 microwave dielectric ceramics with monoclinic structure
verfasst von
Yun Zhang
Shihua Ding
Chao Li
Tianxiu Song
Yingchun Zhang
Publikationsdatum
13.04.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 20/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04629-z

Weitere Artikel der Ausgabe 20/2020

Journal of Materials Science 20/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.