Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.09.2015 | Focus | Ausgabe 9/2015

Soft Computing 9/2015

Border-sensitive learning in generalized learning vector quantization: an alternative to support vector machines

Zeitschrift:
Soft Computing > Ausgabe 9/2015
Autoren:
Marika Kaden, Martin Riedel, Wieland Hermann, Thomas Villmann
Wichtige Hinweise
Communicated by I. R. Ruiz.

Abstract

Learning vector quantization (LVQ) algorithms as powerful classifier models for class discrimination of vectorial data belong to the family of prototype-based classifiers with a learning scheme based on Hebbian learning as a widely accepted neuronal learning paradigm. Those classifier approaches estimate the class distribution and generate from this a class decision for vectors to be classified. The estimation can be done by the determination of class-typical sensitive prototypes inside the class distribution area like in LVQ or by detection of the class borders for class discrimination as preferred by support vector machines (SVMs). Both strategies provide advantages and disadvantages depending on the given classification task. Whereas LVQs are very intuitive and usually process the data during learning in the data space, frequently equipped with variants of the Euclidean metric, SVMs implicitly map the data into a high-dimensional kernel-induced feature space for better separation. In this Hilbert space, the inner product is compliant to the kernel. However, this implicit mapping makes a vivid interpretation more difficult. As an alternative, we propose in this paper two modifications of LVQ to make it comparable to SVM: first border-sensitive learning is introduced to achieve border-responsible prototypes comparable with support vectors in SVM. Second, kernel distances for differentiable kernels are considered, such that prototype learning takes place in a metric space isomorphic to the feature mapping space of SVM. Combination of both features gives a powerful prototype-based classifier while keeping the easy interpretation and the intuitive Hebbian learning scheme of LVQ.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 9/2015

Soft Computing 9/2015 Zur Ausgabe

Premium Partner

    Bildnachweise