Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

31.12.2016 | Technical Paper | Ausgabe 1/2018

Microsystem Technologies 1/2018

Bot detection using unsupervised machine learning

Zeitschrift:
Microsystem Technologies > Ausgabe 1/2018
Autoren:
Wei Wu, Jaime Alvarez, Chengcheng Liu, Hung-Min Sun

Abstract

This research focuses on bot detection through implementation of techniques such as traffic analysis, unsupervised machine learning, and similarity analysis between benign traffic data and bot traffic data. In this study, we tested and experimented with different clustering algorithms and recorded their accuracy with our prepared datasets. Later, the best clustering algorithm was used to proceed with the next steps of the methodology such as determination of majority clusters (cluster with most flows), removal of duplicate flows, and calculation of similarity analysis. Results were recorded for the removal of duplicate flows stage, the results indicate how many flows each majority cluster contains and how many duplicate flows were removed from this majority cluster. Next, results for similarity analysis indicate the value of the similarity coefficient for the comparisons between all datasets (bot datasets and benign dataset). With these results we can present some heuristic conclusion for determining possible bot infection in a certain host.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2018

Microsystem Technologies 1/2018 Zur Ausgabe