Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

04.03.2020 | Research Article-Computer Engineering and Computer Science | Ausgabe 4/2020

Arabian Journal for Science and Engineering 4/2020

Bottleneck Feature-Based Hybrid Deep Autoencoder Approach for Indian Language Identification

Zeitschrift:
Arabian Journal for Science and Engineering > Ausgabe 4/2020
Autoren:
Himanish Shekhar Das, Pinki Roy

Abstract

Latest and emerging approaches are essential to resolve the communication barrier among different languages in speech processing. The automatic language identification system is developed to identify the spoken language from speech utterances. Feature selection is a very challenging task in language identification. In this paper, bottleneck feature-based hybrid deep autoencoder approach is proposed to identify the given speech signal with corresponding language features. In the proposed approach, initially Mel-frequency cepstral coefficients, linear prediction coefficients, and shifted delta coefficients features are directly extracted from multilingual speech utterances. Further, we extracted bottleneck feature from the bottleneck layer of the bottleneck deep neural network. Initially, recognition rate has been evaluated for each feature set to find out the best feature. Finally, the best feature along with other features is used as the input for deep autoencoder with softmax regression to identify the language based on class labels. The deep autoencoder is fine-tuned to reach the global optimum through Jaya optimization algorithm. To carry out the experiments, the recorded database is used for four Indian languages with special emphasis on northeastern languages. The experimental results demonstrate that the proposed hybrid approach using bottleneck feature with shifted delta coefficients is performing well with 97.10% accuracy. Moreover, experimental results also show that proposed hybrid approach gives superior outcome when compared with the baseline deep neural network-based approaches.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2020

Arabian Journal for Science and Engineering 4/2020 Zur Ausgabe

Research Article - Special Issue - Intelligent Computing and Interdisciplinary Applications

IoT Applications and Services for Connected and Autonomous Electric Vehicles

Research Article - Computer Engineering and Computer Science

Initial Seed Selection for Mixed Data Using Modified K-means Clustering Algorithm

Research article - Special Issue - Intelligent Computing and Interdisciplinary Applications

On Stability Analysis of Particle Swarm Optimization Algorithm

Research Article-Computer Engineering and Computer Science

Effective Removal of Privacy Breaches in Disassociated Transactional Datasets

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

    Bildnachweise