Skip to main content
Erschienen in: Acta Mechanica 8/2020

08.06.2020 | Original Paper

Boundary control of a Timoshenko beam with prescribed performance

verfasst von: Junteng Ma, Zhengtao Wei, Hao Wen, Dongping Jin

Erschienen in: Acta Mechanica | Ausgabe 8/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper focuses on the boundary control of a Timoshenko beam with a tip mass in space. Compared with an Euler–Bernoulli beam model, the coupling of the Timoshenko beam’s transverse vibration and its cross-sectional rotation makes it difficult to develop the controller. The Timoshenko beam is essentially a distributed parameter system, the motion of which can be described using partial differential equations. A prescribed performance function is introduced to the boundary control strategy to guarantee the transient and steady tracking errors. By applying the proposed controller, the outputs are ultimately restricted within a small residual set, which is arbitrarily predefined, and the minimum convergence rate can be ensured. The stability of the boundary control is analyzed using the LaSalle’s invariance principle and the theoretical solutions of the Timoshenko beam model. Finally, the performance of the presented boundary controller is verified by numerical case studies.
Literatur
1.
Zurück zum Zitat Meng, D.S., Wang, X.Q., Xu, W.F., Liang, B.: Space robots with flexible appendages: dynamic modeling, coupling measurement, and vibration suppression. J. Sound Vib. 396, 30–50 (2017)CrossRef Meng, D.S., Wang, X.Q., Xu, W.F., Liang, B.: Space robots with flexible appendages: dynamic modeling, coupling measurement, and vibration suppression. J. Sound Vib. 396, 30–50 (2017)CrossRef
2.
Zurück zum Zitat Chen, T., Shan, J.J., Wen, H.: Distributed adaptive attitude control for networked underactuated flexible spacecraft. IEEE Trans. Aerosp. Electron. Syst. (2018) Chen, T., Shan, J.J., Wen, H.: Distributed adaptive attitude control for networked underactuated flexible spacecraft. IEEE Trans. Aerosp. Electron. Syst. (2018)
3.
Zurück zum Zitat Verlinden, O., Huynh, H.N., Kouroussis, G., Rivière-Lorphèvre, E.: Modelling of flexible bodies with minimal coordinates by means of the corotational formulation. Multibody Syst. Dyn. 42, 495–514 (2018)MathSciNetCrossRef Verlinden, O., Huynh, H.N., Kouroussis, G., Rivière-Lorphèvre, E.: Modelling of flexible bodies with minimal coordinates by means of the corotational formulation. Multibody Syst. Dyn. 42, 495–514 (2018)MathSciNetCrossRef
4.
Zurück zum Zitat Chen, T., Wen, H.: Autonomous assembly with collision avoidance of a fleet of flexible spacecraft based on disturbance observer. Acta Astronaut. 147, 86–96 (2018)CrossRef Chen, T., Wen, H.: Autonomous assembly with collision avoidance of a fleet of flexible spacecraft based on disturbance observer. Acta Astronaut. 147, 86–96 (2018)CrossRef
5.
Zurück zum Zitat Korayem, M.H., Dehkordi, S.F.: Derivation of dynamic equation of viscoelastic manipulator with revolute-prismatic joint using recursive Gibbs-Appell formulation. Nonlinear Dyn. 89, 2041–2064 (2017)CrossRef Korayem, M.H., Dehkordi, S.F.: Derivation of dynamic equation of viscoelastic manipulator with revolute-prismatic joint using recursive Gibbs-Appell formulation. Nonlinear Dyn. 89, 2041–2064 (2017)CrossRef
6.
Zurück zum Zitat Yang, X.X., Ge, S.S., He, W.: Dynamic modelling and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances. Int. J. Control 91, 969–988 (2018)MathSciNetCrossRef Yang, X.X., Ge, S.S., He, W.: Dynamic modelling and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances. Int. J. Control 91, 969–988 (2018)MathSciNetCrossRef
7.
Zurück zum Zitat Ouyang, Y.C., He, W., Li, X.J.: Reinforcement learning control of a single-link flexible robotic manipulator. IET Control Theory Appl. 11, 1426–1433 (2017)MathSciNetCrossRef Ouyang, Y.C., He, W., Li, X.J.: Reinforcement learning control of a single-link flexible robotic manipulator. IET Control Theory Appl. 11, 1426–1433 (2017)MathSciNetCrossRef
8.
Zurück zum Zitat Chen, T., Shan, J.J., Ramkumar, G.: Distributed adaptive control for multiple under-actuated Lagrangian systems under fixed or switching topology. Nonlinear Dyn. 93, 1705–1718 (2018)CrossRef Chen, T., Shan, J.J., Ramkumar, G.: Distributed adaptive control for multiple under-actuated Lagrangian systems under fixed or switching topology. Nonlinear Dyn. 93, 1705–1718 (2018)CrossRef
10.
Zurück zum Zitat Ma, J.T., Wen, H., Jin, D.P.: PDE model-based boundary control of a spacecraft with double flexible appendages under prescribed performance. Adv. Space Res. 65, 586–597 (2020)CrossRef Ma, J.T., Wen, H., Jin, D.P.: PDE model-based boundary control of a spacecraft with double flexible appendages under prescribed performance. Adv. Space Res. 65, 586–597 (2020)CrossRef
11.
Zurück zum Zitat Auriol, J., Morris, K.A., Di Meglio, F.: Late-lumping backstepping control of partial differential equations. Automatica 100, 247–259 (2019)MathSciNetCrossRef Auriol, J., Morris, K.A., Di Meglio, F.: Late-lumping backstepping control of partial differential equations. Automatica 100, 247–259 (2019)MathSciNetCrossRef
12.
Zurück zum Zitat He, W., Ge, S.S.: Vibration control of a flexible beam with output constraint. IEEE Trans. Ind. Electron. 62, 5023–5030 (2015)CrossRef He, W., Ge, S.S.: Vibration control of a flexible beam with output constraint. IEEE Trans. Ind. Electron. 62, 5023–5030 (2015)CrossRef
13.
Zurück zum Zitat Liu, Z.J., Liu, J.K., He, W.: Boundary control of an Euler–Bernoulli beam with input and output restrictions. Nonlinear Dyn. 92, 531–541 (2018)CrossRef Liu, Z.J., Liu, J.K., He, W.: Boundary control of an Euler–Bernoulli beam with input and output restrictions. Nonlinear Dyn. 92, 531–541 (2018)CrossRef
14.
Zurück zum Zitat Jiang, T.T., Liu, J.K., He, W.: Adaptive boundary control for a flexible manipulator with state constraints using a Barrier Lyapunov Function. J. Dyn. Syst. Meas. Control. 140 (2018) Jiang, T.T., Liu, J.K., He, W.: Adaptive boundary control for a flexible manipulator with state constraints using a Barrier Lyapunov Function. J. Dyn. Syst. Meas. Control. 140 (2018)
15.
Zurück zum Zitat He, W., Mu, X.X., Chen, Y.N., He, X.Y., Yu, Y.: Modeling and vibration control of the flapping-wing robotic aircraft with output constraint. J. Sound Vib. 423, 472–483 (2018)CrossRef He, W., Mu, X.X., Chen, Y.N., He, X.Y., Yu, Y.: Modeling and vibration control of the flapping-wing robotic aircraft with output constraint. J. Sound Vib. 423, 472–483 (2018)CrossRef
16.
Zurück zum Zitat Cao, F.F., Liu, J.K.: Vibration control for a rigid-flexible manipulator with full state constraints via Barrier Lyapunov Function. J. Sound Vib. 406, 237–252 (2017)CrossRef Cao, F.F., Liu, J.K.: Vibration control for a rigid-flexible manipulator with full state constraints via Barrier Lyapunov Function. J. Sound Vib. 406, 237–252 (2017)CrossRef
17.
Zurück zum Zitat Zhang, S., He, X.Y., Yang, C.: Vibration control of a flexible marine riser with joint angle constraint. Nonlinear Dyn. 87, 617–632 (2017)CrossRef Zhang, S., He, X.Y., Yang, C.: Vibration control of a flexible marine riser with joint angle constraint. Nonlinear Dyn. 87, 617–632 (2017)CrossRef
18.
Zurück zum Zitat Bechlioulis, C.P., Rovithakis, G.A.: Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems. Automatica 45, 532–538 (2009)MathSciNetCrossRef Bechlioulis, C.P., Rovithakis, G.A.: Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems. Automatica 45, 532–538 (2009)MathSciNetCrossRef
19.
Zurück zum Zitat Bechlioulis, C.P., Rovithakis, G.A.: Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans. Autom. Control 53, 2090–2099 (2008)MathSciNetCrossRef Bechlioulis, C.P., Rovithakis, G.A.: Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans. Autom. Control 53, 2090–2099 (2008)MathSciNetCrossRef
20.
Zurück zum Zitat Karayiannidis, Y., Doulgeri, Z.: Model-free robot joint position regulation and tracking with prescribed performance guarantees. Robot. Autonom. Syst. 60, 214–226 (2012)CrossRef Karayiannidis, Y., Doulgeri, Z.: Model-free robot joint position regulation and tracking with prescribed performance guarantees. Robot. Autonom. Syst. 60, 214–226 (2012)CrossRef
21.
Zurück zum Zitat Li, S., Xiang, Z.: Adaptive prescribed performance control for switched nonlinear systems with input saturation. Int. J. Syst. Sci. 49, 113–123 (2018)MathSciNetCrossRef Li, S., Xiang, Z.: Adaptive prescribed performance control for switched nonlinear systems with input saturation. Int. J. Syst. Sci. 49, 113–123 (2018)MathSciNetCrossRef
22.
Zurück zum Zitat Wei, C.S., Luo, J.J., Dai, H.H., Bian, Z.L., Yuan, J.P.: Learning-based adaptive prescribed performance control of postcapture space robot-target combination without inertia identifications. Acta Astronaut. 146, 228–242 (2018)CrossRef Wei, C.S., Luo, J.J., Dai, H.H., Bian, Z.L., Yuan, J.P.: Learning-based adaptive prescribed performance control of postcapture space robot-target combination without inertia identifications. Acta Astronaut. 146, 228–242 (2018)CrossRef
23.
Zurück zum Zitat Wang, C.C., Yang, G.H.: Observer-based adaptive prescribed performance tracking control for nonlinear systems with unknown control direction and input saturation. Neurocomputing 284, 17–26 (2018)CrossRef Wang, C.C., Yang, G.H.: Observer-based adaptive prescribed performance tracking control for nonlinear systems with unknown control direction and input saturation. Neurocomputing 284, 17–26 (2018)CrossRef
24.
Zurück zum Zitat Liu, Z.J., Liu, J.K.: Boundary control of a flexible robotic manipulator with output constraints. Asian J. Control 19, 332–345 (2017)MathSciNetCrossRef Liu, Z.J., Liu, J.K.: Boundary control of a flexible robotic manipulator with output constraints. Asian J. Control 19, 332–345 (2017)MathSciNetCrossRef
25.
Zurück zum Zitat Liu, Z.J., Liu, J.K.: Adaptive iterative learning boundary control of a flexible manipulator with guaranteed transient performance. Asian J. Control 19, 1–12 (2017)MathSciNetCrossRef Liu, Z.J., Liu, J.K.: Adaptive iterative learning boundary control of a flexible manipulator with guaranteed transient performance. Asian J. Control 19, 1–12 (2017)MathSciNetCrossRef
26.
Zurück zum Zitat Cao, F.F., Liu, J.K.: Boundary control for a constrained two-link rigid-flexible manipulator with prescribed performance. Int. J. Control 91, 1091–1103 (2018)MathSciNetCrossRef Cao, F.F., Liu, J.K.: Boundary control for a constrained two-link rigid-flexible manipulator with prescribed performance. Int. J. Control 91, 1091–1103 (2018)MathSciNetCrossRef
27.
Zurück zum Zitat Siuka, A., Schöberl, M., Schlacher, K.: Port-Hamiltonian modelling and energy-based control of the Timoshenko beam. Acta Mech. 222, 69–89 (2011)CrossRef Siuka, A., Schöberl, M., Schlacher, K.: Port-Hamiltonian modelling and energy-based control of the Timoshenko beam. Acta Mech. 222, 69–89 (2011)CrossRef
28.
Zurück zum Zitat Pirrotta, A., Cutrona, S., Di Lorenzo, S.: Fractional visco-elastic Timoshenko beam from elastic Euler–Bernoulli beam. Acta Mech. 226, 179–189 (2015)MathSciNetCrossRef Pirrotta, A., Cutrona, S., Di Lorenzo, S.: Fractional visco-elastic Timoshenko beam from elastic Euler–Bernoulli beam. Acta Mech. 226, 179–189 (2015)MathSciNetCrossRef
29.
Zurück zum Zitat Aldraihem, O.J., Wetherhold, R.C., Singh, T.: Distributed control of laminated beams: Timoshenko theory vs. Euler–Bernoulli theory. J. Intell. Mater. Syst. Struct. 8, 149–157 (1997)CrossRef Aldraihem, O.J., Wetherhold, R.C., Singh, T.: Distributed control of laminated beams: Timoshenko theory vs. Euler–Bernoulli theory. J. Intell. Mater. Syst. Struct. 8, 149–157 (1997)CrossRef
30.
Zurück zum Zitat Queiroz, M.S.D., Dawson, D.M., Nagarkatti, S.P., Zhang, F.M.: Lyapunov-based control of mechanical systems. Appl. Mech. Rev. 54, B81 (2001)CrossRef Queiroz, M.S.D., Dawson, D.M., Nagarkatti, S.P., Zhang, F.M.: Lyapunov-based control of mechanical systems. Appl. Mech. Rev. 54, B81 (2001)CrossRef
31.
Zurück zum Zitat Liberzon, D.: Calculus of Variations and Optimal Control Theory: A Concise Introduction. Princeton University Press, Princeton (2012)CrossRef Liberzon, D.: Calculus of Variations and Optimal Control Theory: A Concise Introduction. Princeton University Press, Princeton (2012)CrossRef
32.
Zurück zum Zitat LaSalle, J.P.: The Stability of Dynamical Systems. Siam, New York (1976)CrossRef LaSalle, J.P.: The Stability of Dynamical Systems. Siam, New York (1976)CrossRef
33.
Zurück zum Zitat Cao, F.F., Liu, J.K.: Partial differential equation modeling and vibration control for a nonlinear 3D rigid-flexible manipulator system with actuator faults. Int. J. Robust Nonlinear Control 29, 3793–3807 (2019)MathSciNetCrossRef Cao, F.F., Liu, J.K.: Partial differential equation modeling and vibration control for a nonlinear 3D rigid-flexible manipulator system with actuator faults. Int. J. Robust Nonlinear Control 29, 3793–3807 (2019)MathSciNetCrossRef
34.
Zurück zum Zitat Chen, T., Wen, H., Wei, Z.T.: Distributed attitude tracking for multiple flexible spacecraft described by partial differential equations. Acta Astronaut. 159, 637–645 (2019)CrossRef Chen, T., Wen, H., Wei, Z.T.: Distributed attitude tracking for multiple flexible spacecraft described by partial differential equations. Acta Astronaut. 159, 637–645 (2019)CrossRef
35.
Zurück zum Zitat Cao, F.F., Liu, J.K.: Three-dimensional modeling and input saturation control for a two-link flexible manipulator based on infinite dimensional model. J. Frankl. Inst. 357, 1026–1042 (2020)MathSciNetCrossRef Cao, F.F., Liu, J.K.: Three-dimensional modeling and input saturation control for a two-link flexible manipulator based on infinite dimensional model. J. Frankl. Inst. 357, 1026–1042 (2020)MathSciNetCrossRef
36.
Zurück zum Zitat Vu, Q.P., Wang, J.M., Xu, G.Q., Yung, S.P.: Spectral analysis and system of fundamental solutions for Timoshenko beams. Appl. Math. Lett. 18, 127–134 (2005)MathSciNetCrossRef Vu, Q.P., Wang, J.M., Xu, G.Q., Yung, S.P.: Spectral analysis and system of fundamental solutions for Timoshenko beams. Appl. Math. Lett. 18, 127–134 (2005)MathSciNetCrossRef
Metadaten
Titel
Boundary control of a Timoshenko beam with prescribed performance
verfasst von
Junteng Ma
Zhengtao Wei
Hao Wen
Dongping Jin
Publikationsdatum
08.06.2020
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 8/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02701-y

Weitere Artikel der Ausgabe 8/2020

Acta Mechanica 8/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.