Skip to main content
Erschienen in:

01.12.2024

Bounded absorbing sets for compressible non-Newtonian fluids

76A05 , 35Q35

verfasst von: Jan Muhammad

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, we investigate non-Newtonian compressible fluid in three-dimensional bounded domain with a compact Lipschitz boundary driven by bounded forces. We investigate the existence result with bounded absorbing sets for weak solutions of considered fluid, while the adiabatic constant \(\gamma \) is subject to some specific restrictions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Baranger C, Boudin L, Jabin PE, Mancini S (2005) A modeling of biospray for the upper airways. ESAIM Proc 14:41–47MathSciNetCrossRef Baranger C, Boudin L, Jabin PE, Mancini S (2005) A modeling of biospray for the upper airways. ESAIM Proc 14:41–47MathSciNetCrossRef
2.
Zurück zum Zitat Boudin L, Desvilletter L, Motte R (2003) A modeling of compressible droplets in a fluid. Commun Math Sci 1(4):657–669MathSciNetCrossRef Boudin L, Desvilletter L, Motte R (2003) A modeling of compressible droplets in a fluid. Commun Math Sci 1(4):657–669MathSciNetCrossRef
3.
Zurück zum Zitat Williams FA (1958) Spray combustion and atomization. Phys Fluids 1:541–545CrossRef Williams FA (1958) Spray combustion and atomization. Phys Fluids 1:541–545CrossRef
4.
Zurück zum Zitat Feireisl E, Petzeltová H (2001) Bounded absorbing sets for the Navier–Stokes equations of compressible fluid. Commun Partial Differ Equ 26:1133–1144MathSciNetCrossRef Feireisl E, Petzeltová H (2001) Bounded absorbing sets for the Navier–Stokes equations of compressible fluid. Commun Partial Differ Equ 26:1133–1144MathSciNetCrossRef
5.
Zurück zum Zitat Feireisl E, Petzeltová H (2001) Asymptotic compactness of global trajectories generated by the Navier–Stokes equations of a compressible fluid. J Differ Equ 173:390–409MathSciNetCrossRef Feireisl E, Petzeltová H (2001) Asymptotic compactness of global trajectories generated by the Navier–Stokes equations of a compressible fluid. J Differ Equ 173:390–409MathSciNetCrossRef
6.
Zurück zum Zitat Feireisl E (2001) On compactness of solutions to the compressible isentropic Navier–Stokes equations when the density is not square integrable. Comment Math Univ Carol 42:83–98MathSciNet Feireisl E (2001) On compactness of solutions to the compressible isentropic Navier–Stokes equations when the density is not square integrable. Comment Math Univ Carol 42:83–98MathSciNet
7.
Zurück zum Zitat Feireisl E (2003) Propagation of oscillations, complete trajectories and attractors for compressible flows. Nonlinear Differ Equ Appl 10:83–98MathSciNetCrossRef Feireisl E (2003) Propagation of oscillations, complete trajectories and attractors for compressible flows. Nonlinear Differ Equ Appl 10:83–98MathSciNetCrossRef
8.
Zurück zum Zitat Wang W (2015) On global behavior of weak solutions of compressible flows of nematic liquid crystals. Acta Math Sci 35:650–672MathSciNetCrossRef Wang W (2015) On global behavior of weak solutions of compressible flows of nematic liquid crystals. Acta Math Sci 35:650–672MathSciNetCrossRef
9.
Zurück zum Zitat Ladyzhenskaya OA (1967) New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems. Trudy Math Inst Steklov 102:85–104MathSciNet Ladyzhenskaya OA (1967) New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems. Trudy Math Inst Steklov 102:85–104MathSciNet
10.
Zurück zum Zitat Ladyzhenskaya OA (1969) The mathematical theory of viscous incompressible flow. Gordon and Breach, New York Ladyzhenskaya OA (1969) The mathematical theory of viscous incompressible flow. Gordon and Breach, New York
11.
Zurück zum Zitat Lions PL (1998) Mathematical topics in fluid mechanics, compressible models: Oxford lecture series in mathematics and its applications, 10, vol 2. The Clarendon Press, Oxford University Press, Oxford Science Publications, New York Lions PL (1998) Mathematical topics in fluid mechanics, compressible models: Oxford lecture series in mathematics and its applications, 10, vol 2. The Clarendon Press, Oxford University Press, Oxford Science Publications, New York
12.
Zurück zum Zitat Novotny A, Straskraba I (2004) Introduction to the mathematical theory of compressible flow. OUP, OxfordCrossRef Novotny A, Straskraba I (2004) Introduction to the mathematical theory of compressible flow. OUP, OxfordCrossRef
13.
Zurück zum Zitat Feireisl E, Novotný A, Petzeltová H (2001) On the existence of globally defined weak solutions to the Navier–Stokes equations. J Math Fluid Mech 4:358–392MathSciNetCrossRef Feireisl E, Novotný A, Petzeltová H (2001) On the existence of globally defined weak solutions to the Navier–Stokes equations. J Math Fluid Mech 4:358–392MathSciNetCrossRef
14.
Zurück zum Zitat Jiang S, Zhang P (2003) Axisymmetric solutions of the 3D Navier–Stokes equations for compressible isentropic fluids. J Math Pures Appl 82:949–973MathSciNetCrossRef Jiang S, Zhang P (2003) Axisymmetric solutions of the 3D Navier–Stokes equations for compressible isentropic fluids. J Math Pures Appl 82:949–973MathSciNetCrossRef
15.
Zurück zum Zitat Mamontov AE (2000) Global regularity estimates for multi-dimensional equations of compressible non-Newtonian fluid. Math Notes 68:312–325MathSciNetCrossRef Mamontov AE (2000) Global regularity estimates for multi-dimensional equations of compressible non-Newtonian fluid. Math Notes 68:312–325MathSciNetCrossRef
16.
Zurück zum Zitat Mamontov AE (2007) Existence of global solutions to multi-dimensional equations for Bingham fluids (Russian). Math Notes 82:501–517MathSciNetCrossRef Mamontov AE (2007) Existence of global solutions to multi-dimensional equations for Bingham fluids (Russian). Math Notes 82:501–517MathSciNetCrossRef
17.
Zurück zum Zitat Zhikov VV, Pastukhova SE (2009) On the solvability of the Navier–Stokes system for a compressible non-Newtonian fluid. Dokl Akad Nauk 427:303–307MathSciNet Zhikov VV, Pastukhova SE (2009) On the solvability of the Navier–Stokes system for a compressible non-Newtonian fluid. Dokl Akad Nauk 427:303–307MathSciNet
18.
Zurück zum Zitat Fang L, Kong XJ, Liu JJ (2018) Weak solution to a one-dimensional full compressible non-Newtonian fluids. Math Models Methods Appl Sci 41:3441–3462MathSciNetCrossRef Fang L, Kong XJ, Liu JJ (2018) Weak solution to a one-dimensional full compressible non-Newtonian fluids. Math Models Methods Appl Sci 41:3441–3462MathSciNetCrossRef
19.
Zurück zum Zitat Lions PL (1996) Mathematical topics in fluid mechanics: incompressible models: Oxford lecture series in mathematics and its applications, 3, vol 1. The Clarendon Press, Oxford University Press, Oxford Science Publications, New York Lions PL (1996) Mathematical topics in fluid mechanics: incompressible models: Oxford lecture series in mathematics and its applications, 3, vol 1. The Clarendon Press, Oxford University Press, Oxford Science Publications, New York
20.
Zurück zum Zitat Feireisl E (2004) Dynamics of viscous compressible fluids: Oxford lecture series in mathematics and its applications, vol 26. Oxford University Press, Oxford Feireisl E (2004) Dynamics of viscous compressible fluids: Oxford lecture series in mathematics and its applications, vol 26. Oxford University Press, Oxford
21.
Zurück zum Zitat Muhammad J, Fang L, Guo Z (2020) Global weak solutions to a class of compressible non-Newtonian fluids with vacuum. Math Methods Appl Sci 43:5234–5249MathSciNetCrossRef Muhammad J, Fang L, Guo Z (2020) Global weak solutions to a class of compressible non-Newtonian fluids with vacuum. Math Methods Appl Sci 43:5234–5249MathSciNetCrossRef
22.
Zurück zum Zitat Fang L, Guo Z (2022) Global weak solutions to a three-dimensional compressible non-Newtonian fluid. Commun Math Sci 20:1703–1733MathSciNetCrossRef Fang L, Guo Z (2022) Global weak solutions to a three-dimensional compressible non-Newtonian fluid. Commun Math Sci 20:1703–1733MathSciNetCrossRef
23.
Zurück zum Zitat Feireisl E, Liao X, Málek J (2015) Global weak solutions to a class of non-Newtonian compressible fluids. Math Methods Appl Sci 38:3482–3494MathSciNetCrossRef Feireisl E, Liao X, Málek J (2015) Global weak solutions to a class of non-Newtonian compressible fluids. Math Methods Appl Sci 38:3482–3494MathSciNetCrossRef
24.
Zurück zum Zitat Muhammad J, Samad A (2021) On integrability up to the boundary of the weak solutions to a class of non-Newtonian compressible fluids with vacuum. J Appl Comput Mech 7:1527–1536 Muhammad J, Samad A (2021) On integrability up to the boundary of the weak solutions to a class of non-Newtonian compressible fluids with vacuum. J Appl Comput Mech 7:1527–1536
25.
Zurück zum Zitat Fang D, Zi R, Zhang T (2012) Decay estimates for isentropic compressible Navier–Stokes equations in bounded domain. J Math Anal Appl 386:939–947MathSciNetCrossRef Fang D, Zi R, Zhang T (2012) Decay estimates for isentropic compressible Navier–Stokes equations in bounded domain. J Math Anal Appl 386:939–947MathSciNetCrossRef
26.
Zurück zum Zitat Bogovskii ME (1980) Solution of some vector analysis problems connected with operators div and grad. Trudy Sem SL Sobolev 80:5–40 Bogovskii ME (1980) Solution of some vector analysis problems connected with operators div and grad. Trudy Sem SL Sobolev 80:5–40
Metadaten
Titel
Bounded absorbing sets for compressible non-Newtonian fluids
76A05 , 35Q35
verfasst von
Jan Muhammad
Publikationsdatum
01.12.2024
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2024
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-024-10404-9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.