Skip to main content

14.02.2025 | Original Paper

Box–Cox integrated sARIMA model for day-ahead inertia forecasting

verfasst von: Rabina Ningombam, Chandransh Singh, Sreenu Sreekumar, Rohit Bhakar, Sanjeevikumar Padmanaban

Erschienen in: Electrical Engineering

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modern power systems are characterized by low inertia due to the high penetration of renewable generation (RG). The challenges due to low inertia like high rate of change of frequency (RoCoF) can be overcome by deploying sufficient Fast-Frequency Containment Reserves (FFCRs). The optimal allocation of FFCRs necessitates accurate inertia forecasting. Inertia forecasting has got only a little research attention. Also, existing inertia forecasting models consider only the inertia support from synchronous generators. However, wind generators and motor loads also contribute to the inertia. Further, data pre-processing, transformation, and input selection techniques can be used to improve inertia forecasting accuracy. Therefore, this paper proposes a novel Box–Cox integrated seasonal autoregressive integrated moving average (sARIMA) model by considering the inertia contribution of wind generators and motor loads along with synchronous generators. Box–Cox transformation stabilizes the variance and reduces the impact of heteroscedasticity. This will help reduce white noise and obtain accurate forecasts. sARIMA model is suitable for inertial energy forecasting as inertial energy data shows seasonal patterns. The proposed model uses the Spearman correlation as input selection and the tsrobprep package as data pre-processing techniques. The performance analysis shows that the proposed model shows an annual forecasting accuracy of above 97.5%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sebastian OH, Carlos BD (2024) Trade-off between frequency stability and renewable generation-studying virtual inertia from solar pv and operating stability constraints. Renew Energy 232:121075CrossRef Sebastian OH, Carlos BD (2024) Trade-off between frequency stability and renewable generation-studying virtual inertia from solar pv and operating stability constraints. Renew Energy 232:121075CrossRef
2.
Zurück zum Zitat Shair J, Li H, Hu J, Xie X (2021) Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics. Renew Sustain Energy Rev 145:111111CrossRef Shair J, Li H, Hu J, Xie X (2021) Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics. Renew Sustain Energy Rev 145:111111CrossRef
3.
Zurück zum Zitat Ramadoss H, Muthiah G (2023) Machine learning approach to differentiate excitation failure in synchronous generators from power swing. Electr Eng 105(4):2041–2054CrossRefMATH Ramadoss H, Muthiah G (2023) Machine learning approach to differentiate excitation failure in synchronous generators from power swing. Electr Eng 105(4):2041–2054CrossRefMATH
4.
Zurück zum Zitat Zhang W, Wen Y, Chung C (2024) Inertia security evaluation and application in low-inertia power systems. IEEE Trans Power Syst Zhang W, Wen Y, Chung C (2024) Inertia security evaluation and application in low-inertia power systems. IEEE Trans Power Syst
5.
Zurück zum Zitat Orum E, Kuivaniemi M, Laasonen M, Bruseth AI, Jansson EA, Danell A, Elkington K, Modig N (2015) Future system inertia. ENTSOE, Brussels, Tech. Rep, 1–58 Orum E, Kuivaniemi M, Laasonen M, Bruseth AI, Jansson EA, Danell A, Elkington K, Modig N (2015) Future system inertia. ENTSOE, Brussels, Tech. Rep, 1–58
6.
Zurück zum Zitat Energy, Unit, C.I. Net zero emissions race. https://https://eciu.net/netzerotracker. Accessed 22 Aug 2024 Energy, Unit, C.I. Net zero emissions race. https://​https://eciu.net/netzerotracker. Accessed 22 Aug 2024
8.
Zurück zum Zitat Todakar KM, Gupta PP, Kalkhambkar V, Sharma KC (2024) Optimal scheduling of battery energy storage train and renewable power generation. Electr Eng 1–17 Todakar KM, Gupta PP, Kalkhambkar V, Sharma KC (2024) Optimal scheduling of battery energy storage train and renewable power generation. Electr Eng 1–17
9.
Zurück zum Zitat Bhavsar S, Pitchumani R, Ortega-Vazquez M (2022) A reforecasting-based dynamic reserve estimation for variable renewable generation and demand uncertainty. Electr Power Syst Res 211:108157CrossRefMATH Bhavsar S, Pitchumani R, Ortega-Vazquez M (2022) A reforecasting-based dynamic reserve estimation for variable renewable generation and demand uncertainty. Electr Power Syst Res 211:108157CrossRefMATH
11.
Zurück zum Zitat Yang Q, Duan J, Bian H, Zhang B (2024) Equivalent inertia prediction for power systems with virtual inertia based on pso-svm. Electr Eng 1–14 Yang Q, Duan J, Bian H, Zhang B (2024) Equivalent inertia prediction for power systems with virtual inertia based on pso-svm. Electr Eng 1–14
12.
Zurück zum Zitat Makolo P, Oladeji I, Zamora R, Lie T-T (2021) Data-driven inertia estimation based on frequency gradient for power systems with high penetration of renewable energy sources. Electr Power Syst Res 195:107171CrossRef Makolo P, Oladeji I, Zamora R, Lie T-T (2021) Data-driven inertia estimation based on frequency gradient for power systems with high penetration of renewable energy sources. Electr Power Syst Res 195:107171CrossRef
13.
Zurück zum Zitat Milano F, Dörfler F, Hug G, Hill DJ, Verbič G (2018) Foundations and challenges of low-inertia systems. In: 2018 Power systems computation conference (PSCC). IEEE, pp 1–25 Milano F, Dörfler F, Hug G, Hill DJ, Verbič G (2018) Foundations and challenges of low-inertia systems. In: 2018 Power systems computation conference (PSCC). IEEE, pp 1–25
14.
Zurück zum Zitat Bevrani H, Ghosh A, Ledwich G (2010) Renewable energy sources and frequency regulation: survey and new perspectives. IET Renew Power Gener 4(5):438–457CrossRefMATH Bevrani H, Ghosh A, Ledwich G (2010) Renewable energy sources and frequency regulation: survey and new perspectives. IET Renew Power Gener 4(5):438–457CrossRefMATH
15.
Zurück zum Zitat Heylen E, Teng F, Strbac G (2021) Challenges and opportunities of inertia estimation and forecasting in low-inertia power systems. Renew Sustain Energy Rev 147:111176CrossRefMATH Heylen E, Teng F, Strbac G (2021) Challenges and opportunities of inertia estimation and forecasting in low-inertia power systems. Renew Sustain Energy Rev 147:111176CrossRefMATH
17.
Zurück zum Zitat Ratnam KS, Palanisamy K, Yang G (2020) Future low-inertia power systems: requirements, issues, and solutions-a review. Renew Sustain Energy Rev 124:109773CrossRefMATH Ratnam KS, Palanisamy K, Yang G (2020) Future low-inertia power systems: requirements, issues, and solutions-a review. Renew Sustain Energy Rev 124:109773CrossRefMATH
18.
Zurück zum Zitat Zografos D, Ghandhari M, Eriksson R (2018) Power system inertia estimation: utilization of frequency and voltage response after a disturbance. Electr Power Syst Res 161:52–60CrossRefMATH Zografos D, Ghandhari M, Eriksson R (2018) Power system inertia estimation: utilization of frequency and voltage response after a disturbance. Electr Power Syst Res 161:52–60CrossRefMATH
19.
Zurück zum Zitat Lugnani L, Dotta D, Lackner C, Chow J (2020) Armax-based method for inertial constant estimation of generation units using synchrophasors. Electr Power Syst Res 180:106097CrossRef Lugnani L, Dotta D, Lackner C, Chow J (2020) Armax-based method for inertial constant estimation of generation units using synchrophasors. Electr Power Syst Res 180:106097CrossRef
20.
Zurück zum Zitat Du P, Matevosyan J (2017) Forecast system inertia condition and its impact to integrate more renewables. IEEE Trans Smart Grid 9(2):1531–1533CrossRefMATH Du P, Matevosyan J (2017) Forecast system inertia condition and its impact to integrate more renewables. IEEE Trans Smart Grid 9(2):1531–1533CrossRefMATH
23.
Zurück zum Zitat Chamorro HR, Orjuela-Cañón AD, Ganger D, Persson M, Gonzalez-Longatt F, Sood VK, Martinez W (2020) Nadir frequency estimation in low-inertia power systems. In: 2020 IEEE 29th international symposium on industrial electronics (ISIE). IEEE, pp 918–922 Chamorro HR, Orjuela-Cañón AD, Ganger D, Persson M, Gonzalez-Longatt F, Sood VK, Martinez W (2020) Nadir frequency estimation in low-inertia power systems. In: 2020 IEEE 29th international symposium on industrial electronics (ISIE). IEEE, pp 918–922
24.
Zurück zum Zitat Paidi ER, Marzooghi H, Yu J, Terzija V (2020) Development and validation of artificial neural network-based tools for forecasting of power system inertia with wind farms penetration. IEEE Syst J 14(4):4978–4989CrossRefMATH Paidi ER, Marzooghi H, Yu J, Terzija V (2020) Development and validation of artificial neural network-based tools for forecasting of power system inertia with wind farms penetration. IEEE Syst J 14(4):4978–4989CrossRefMATH
25.
Zurück zum Zitat Carlini E, Del Pizzo F, Giannuzzi G, Lauria D, Mottola F, Pisani C (2021) Online analysis and prediction of the inertia in power systems with renewable power generation based on a minimum variance harmonic finite impulse response filter. Int J Electr Power Energy Syst 131:107042CrossRef Carlini E, Del Pizzo F, Giannuzzi G, Lauria D, Mottola F, Pisani C (2021) Online analysis and prediction of the inertia in power systems with renewable power generation based on a minimum variance harmonic finite impulse response filter. Int J Electr Power Energy Syst 131:107042CrossRef
26.
Zurück zum Zitat Lavanya L, Swarup KS (2024) Inertia monitoring in power systems: critical features, challenges, and framework. Renew Sustain Energy Rev 190:114076CrossRefMATH Lavanya L, Swarup KS (2024) Inertia monitoring in power systems: critical features, challenges, and framework. Renew Sustain Energy Rev 190:114076CrossRefMATH
27.
Zurück zum Zitat Li Q, Ren B, Tang W, Wang D, Wang C, Lv Z (2022) Analyzing the inertia of power grid systems comprising diverse conventional and renewable energy sources. Energy Rep 8:15095–15105CrossRefMATH Li Q, Ren B, Tang W, Wang D, Wang C, Lv Z (2022) Analyzing the inertia of power grid systems comprising diverse conventional and renewable energy sources. Energy Rep 8:15095–15105CrossRefMATH
28.
Zurück zum Zitat Gonzalez-Longatt F, Acosta M, Chamorro H, Topic D (2020) Short-term kinetic energy forecast using a structural time series model: Study case of nordic power system. In: 2020 International conference on smart systems and technologies (SST). IEEE, pp 173–178 Gonzalez-Longatt F, Acosta M, Chamorro H, Topic D (2020) Short-term kinetic energy forecast using a structural time series model: Study case of nordic power system. In: 2020 International conference on smart systems and technologies (SST). IEEE, pp 173–178
29.
Zurück zum Zitat Hu P, Li Y, Yu Y, Blaabjerg F (2023) Inertia estimation of renewable-energy-dominated power system. Renew Sustain Energy Rev 183:113481CrossRefMATH Hu P, Li Y, Yu Y, Blaabjerg F (2023) Inertia estimation of renewable-energy-dominated power system. Renew Sustain Energy Rev 183:113481CrossRefMATH
30.
Zurück zum Zitat Howlader AM, Urasaki N, Yona A, Senjyu T, Saber AY (2013) A review of output power smoothing methods for wind energy conversion systems. Renew Sustain Energy Rev 26:135–146CrossRefMATH Howlader AM, Urasaki N, Yona A, Senjyu T, Saber AY (2013) A review of output power smoothing methods for wind energy conversion systems. Renew Sustain Energy Rev 26:135–146CrossRefMATH
31.
Zurück zum Zitat Tielens P, Van Hertem D (2016) The relevance of inertia in power systems. Renew Sustain Energy Rev 55:999–1009CrossRefMATH Tielens P, Van Hertem D (2016) The relevance of inertia in power systems. Renew Sustain Energy Rev 55:999–1009CrossRefMATH
32.
Zurück zum Zitat Makolo P, Oladeii I, Zamora R, Lie T-T (2021) Short-range inertia prediction for power networks with penetration of res. In: TENCON 2021-2021 IEEE Region 10 Conference (TENCON). IEEE, pp 765–770 Makolo P, Oladeii I, Zamora R, Lie T-T (2021) Short-range inertia prediction for power networks with penetration of res. In: TENCON 2021-2021 IEEE Region 10 Conference (TENCON). IEEE, pp 765–770
33.
Zurück zum Zitat Shrestha A, Ghimire B, Gonzalez-Longatt F (2021) A bayesian model to forecast the time series kinetic energy data for a power system. Energies 14(11):3299CrossRefMATH Shrestha A, Ghimire B, Gonzalez-Longatt F (2021) A bayesian model to forecast the time series kinetic energy data for a power system. Energies 14(11):3299CrossRefMATH
34.
Zurück zum Zitat Prakash V, Bhakar R, Tiwari H, Sharma KC (2018) System inertia prediction for primary frequency response adequacy under uncertain wind generation. In: 2018 8th IEEE India international conference on power electronics (IICPE). IEEE, pp 1–6 Prakash V, Bhakar R, Tiwari H, Sharma KC (2018) System inertia prediction for primary frequency response adequacy under uncertain wind generation. In: 2018 8th IEEE India international conference on power electronics (IICPE). IEEE, pp 1–6
35.
Zurück zum Zitat Graham J, Heylen E, Bian Y, Teng F (2022) Benchmarking explanatory models for inertia forecasting using public data of the nordic area. In: 2022 17th international conference on probabilistic methods applied to power systems (PMAPS). IEEE, pp 1–6 Graham J, Heylen E, Bian Y, Teng F (2022) Benchmarking explanatory models for inertia forecasting using public data of the nordic area. In: 2022 17th international conference on probabilistic methods applied to power systems (PMAPS). IEEE, pp 1–6
36.
Zurück zum Zitat Matsila H, Bokoro P (2018) Load forecasting using statistical time series model in a medium voltage distribution network. In: IECON 2018-44th annual conference of the IEEE industrial electronics society. IEEE, pp 4974–4979 Matsila H, Bokoro P (2018) Load forecasting using statistical time series model in a medium voltage distribution network. In: IECON 2018-44th annual conference of the IEEE industrial electronics society. IEEE, pp 4974–4979
37.
Zurück zum Zitat Yatiyana E, Rajakaruna S, Ghosh A (2017) Wind speed and direction forecasting for wind power generation using arima model. In: 2017 Australasian Universities Power Engineering Conference (AUPEC). IEEE, pp 1–6 Yatiyana E, Rajakaruna S, Ghosh A (2017) Wind speed and direction forecasting for wind power generation using arima model. In: 2017 Australasian Universities Power Engineering Conference (AUPEC). IEEE, pp 1–6
38.
Zurück zum Zitat Shadab A, Ahmad S, Said S (2020) Spatial forecasting of solar radiation using arima model. Remote Sens Appl Soc Environ 20:100427MATH Shadab A, Ahmad S, Said S (2020) Spatial forecasting of solar radiation using arima model. Remote Sens Appl Soc Environ 20:100427MATH
39.
Zurück zum Zitat Heylen E, Browell J, Teng F (2022) Probabilistic day-ahead inertia forecasting. IEEE Trans Power Syst 37(5):3738–3746CrossRef Heylen E, Browell J, Teng F (2022) Probabilistic day-ahead inertia forecasting. IEEE Trans Power Syst 37(5):3738–3746CrossRef
40.
Zurück zum Zitat Graham J, Heylen E, Bian Y, Teng F (2022) Benchmarking explanatory models for inertia forecasting using public data of the nordic area. In: 2022 17th international conference on probabilistic methods applied to power systems (PMAPS), pp 1–6 Graham J, Heylen E, Bian Y, Teng F (2022) Benchmarking explanatory models for inertia forecasting using public data of the nordic area. In: 2022 17th international conference on probabilistic methods applied to power systems (PMAPS), pp 1–6
41.
Zurück zum Zitat Cepeda J, Gómez I, Calero F, Vaca A (2022) Big data platform for real-time oscillatory stability predictive assessment using recurrent neural networks and waprotector’s records. In: 2022 International conference on smart grid synchronized measurements and analytics (SGSMA), pp 1–6 Cepeda J, Gómez I, Calero F, Vaca A (2022) Big data platform for real-time oscillatory stability predictive assessment using recurrent neural networks and waprotector’s records. In: 2022 International conference on smart grid synchronized measurements and analytics (SGSMA), pp 1–6
43.
Zurück zum Zitat Chatterjee K, Biswas S, Follum JD, Kincic S (2023) Online monitoring applications enabled by phasor measurement units: technical assistance to the power sectors of southeast asia. Technical report, Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) Chatterjee K, Biswas S, Follum JD, Kincic S (2023) Online monitoring applications enabled by phasor measurement units: technical assistance to the power sectors of southeast asia. Technical report, Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
45.
Zurück zum Zitat Kushwaha V, Pindoriya NM (2017) Very short-term solar pv generation forecast using sarima model: A case study. In: 2017 7th international conference on power systems (ICPS). IEEE, pp 430–435 Kushwaha V, Pindoriya NM (2017) Very short-term solar pv generation forecast using sarima model: A case study. In: 2017 7th international conference on power systems (ICPS). IEEE, pp 430–435
46.
Zurück zum Zitat Haddad M, Nicod J, Mainassara YB, Rabehasaina L, Al Masry Z, Péra M (2019) Wind and solar forecasting for renewable energy system using sarima-based model. In: International conference on time series and forecasting Haddad M, Nicod J, Mainassara YB, Rabehasaina L, Al Masry Z, Péra M (2019) Wind and solar forecasting for renewable energy system using sarima-based model. In: International conference on time series and forecasting
47.
Zurück zum Zitat Liu X, Lin Z, Feng Z (2021) Short-term offshore wind speed forecast by seasonal arima-a comparison against gru and lstm. Energy 227:120492CrossRef Liu X, Lin Z, Feng Z (2021) Short-term offshore wind speed forecast by seasonal arima-a comparison against gru and lstm. Energy 227:120492CrossRef
48.
Zurück zum Zitat Yang Z-L, Liu Y-D, Zhu X-S, Chen X, Zhang J (2016) Removing forecasting errors with white gaussian noise after square root transformation. J Forecast 35(8):741–750MathSciNetCrossRefMATH Yang Z-L, Liu Y-D, Zhu X-S, Chen X, Zhang J (2016) Removing forecasting errors with white gaussian noise after square root transformation. J Forecast 35(8):741–750MathSciNetCrossRefMATH
49.
Zurück zum Zitat Dike A, Otuonye E, Chikezie D (2016) The distribution of cube root transformation of the error component of the multiplicative time series model. Glob J Sci Front Res 16(5) Dike A, Otuonye E, Chikezie D (2016) The distribution of cube root transformation of the error component of the multiplicative time series model. Glob J Sci Front Res 16(5)
50.
Zurück zum Zitat Box GE, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B Stat Methodol 26(2):211–243CrossRefMATH Box GE, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B Stat Methodol 26(2):211–243CrossRefMATH
51.
Zurück zum Zitat Tserkezos ED (1992) Forecasting residential electricity consumption in Greece using monthly and quarterly data. Energy Econ 14(3):226–232CrossRefMATH Tserkezos ED (1992) Forecasting residential electricity consumption in Greece using monthly and quarterly data. Energy Econ 14(3):226–232CrossRefMATH
52.
Zurück zum Zitat Sakia RM (1992) The box-cox transformation technique: a review. J R Stat Soc Ser D Stat 41(2):169–178MATH Sakia RM (1992) The box-cox transformation technique: a review. J R Stat Soc Ser D Stat 41(2):169–178MATH
53.
Zurück zum Zitat He Y, Zheng Y, Xu Q (2019) Forecasting energy consumption in Anhui province of China through two box-cox transformation quantile regression probability density methods. Measurement 136:579–593CrossRefMATH He Y, Zheng Y, Xu Q (2019) Forecasting energy consumption in Anhui province of China through two box-cox transformation quantile regression probability density methods. Measurement 136:579–593CrossRefMATH
54.
Zurück zum Zitat Ouyang T, He Y, Li H, Sun Z, Baek S (2017) A deep learning framework for short-term power load forecasting. arXiv preprint arXiv:1711.11519 Ouyang T, He Y, Li H, Sun Z, Baek S (2017) A deep learning framework for short-term power load forecasting. arXiv preprint arXiv:​1711.​11519
55.
Zurück zum Zitat Voyant C, Notton G, Duchaud J-L, Almorox J, Yaseen ZM (2020) Solar irradiation prediction intervals based on box-cox transformation and univariate representation of periodic autoregressive model. Renew Energy Focus 33:43–53CrossRef Voyant C, Notton G, Duchaud J-L, Almorox J, Yaseen ZM (2020) Solar irradiation prediction intervals based on box-cox transformation and univariate representation of periodic autoregressive model. Renew Energy Focus 33:43–53CrossRef
56.
Zurück zum Zitat Che Y, Wang X, Lv X, Lin H (2022) Correlation analysis of traction load sequences based on optimal delay method. Int J Electr Power Energy Syst 142:108356CrossRefMATH Che Y, Wang X, Lv X, Lin H (2022) Correlation analysis of traction load sequences based on optimal delay method. Int J Electr Power Energy Syst 142:108356CrossRefMATH
57.
Zurück zum Zitat Nascimento J, Pinto T, Vale Z (2019) Day-ahead electricity market price forecasting using artificial neural network with spearman data correlation. In: 2019 IEEE Milan PowerTech. IEEE, pp 1–6 Nascimento J, Pinto T, Vale Z (2019) Day-ahead electricity market price forecasting using artificial neural network with spearman data correlation. In: 2019 IEEE Milan PowerTech. IEEE, pp 1–6
58.
Zurück zum Zitat Peng Z, Peng S, Fu L, Lu B, Tang J, Wang K, Li W (2020) A novel deep learning ensemble model with data denoising for short-term wind speed forecasting. Energy Convers Manag 207:112524CrossRefMATH Peng Z, Peng S, Fu L, Lu B, Tang J, Wang K, Li W (2020) A novel deep learning ensemble model with data denoising for short-term wind speed forecasting. Energy Convers Manag 207:112524CrossRefMATH
59.
Zurück zum Zitat Ghimire S, Deo RC, Raj N, Mi J (2019) Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms. Appl Energy 253:113541CrossRef Ghimire S, Deo RC, Raj N, Mi J (2019) Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms. Appl Energy 253:113541CrossRef
60.
Zurück zum Zitat Ray B, Shah R, Islam MR, Islam S (2020) A new data driven long-term solar yield analysis model of photovoltaic power plants. IEEE Access 8:136223–136233CrossRefMATH Ray B, Shah R, Islam MR, Islam S (2020) A new data driven long-term solar yield analysis model of photovoltaic power plants. IEEE Access 8:136223–136233CrossRefMATH
61.
Zurück zum Zitat Lu T, Wang C, Cao Y, Chen H (2023) Photovoltaic power prediction under insufficient historical data based on dendrite network and coupled information analysis. Energy Rep 9:1490–1500CrossRefMATH Lu T, Wang C, Cao Y, Chen H (2023) Photovoltaic power prediction under insufficient historical data based on dendrite network and coupled information analysis. Energy Rep 9:1490–1500CrossRefMATH
62.
Zurück zum Zitat Wang K, Zhang Y, Lin F, Wang J, Zhu M (2022) Nonparametric probabilistic forecasting for wind power generation using quadratic spline quantile function and autoregressive recurrent neural network. IEEE Trans Sustain Energy 13(4):1930–1943CrossRefMATH Wang K, Zhang Y, Lin F, Wang J, Zhu M (2022) Nonparametric probabilistic forecasting for wind power generation using quadratic spline quantile function and autoregressive recurrent neural network. IEEE Trans Sustain Energy 13(4):1930–1943CrossRefMATH
63.
Zurück zum Zitat Avis P, Lee J (2020) Evaluating system imbalance forecasting models for the united kingdom electricity market 2021. Technical report, School of Finance and Management, SOAS, University of London Avis P, Lee J (2020) Evaluating system imbalance forecasting models for the united kingdom electricity market 2021. Technical report, School of Finance and Management, SOAS, University of London
64.
Zurück zum Zitat Lin Z, Liu X, Collu M (2020) Wind power prediction based on high-frequency scada data along with isolation forest and deep learning neural networks. Int J Electr Power Energy Syst 118:105835CrossRefMATH Lin Z, Liu X, Collu M (2020) Wind power prediction based on high-frequency scada data along with isolation forest and deep learning neural networks. Int J Electr Power Energy Syst 118:105835CrossRefMATH
65.
Zurück zum Zitat Wang W, Yang S, Yang Y (2022) An improved data-efficiency algorithm based on combining isolation forest and mean shift for anomaly data filtering in wind power curve. Energies 15(13):4918CrossRefMATH Wang W, Yang S, Yang Y (2022) An improved data-efficiency algorithm based on combining isolation forest and mean shift for anomaly data filtering in wind power curve. Energies 15(13):4918CrossRefMATH
66.
Zurück zum Zitat Alimohammadi H, Chen SN (2022) Performance evaluation of outlier detection techniques in production timeseries: a systematic review and meta-analysis. Expert Syst Appl 191:116371CrossRefMATH Alimohammadi H, Chen SN (2022) Performance evaluation of outlier detection techniques in production timeseries: a systematic review and meta-analysis. Expert Syst Appl 191:116371CrossRefMATH
67.
Zurück zum Zitat Narajewski M, Kley-Holsteg J, Ziel F (2021) tsrobprep—an r package for robust preprocessing of time series data. SoftwareX 16:100809CrossRef Narajewski M, Kley-Holsteg J, Ziel F (2021) tsrobprep—an r package for robust preprocessing of time series data. SoftwareX 16:100809CrossRef
68.
Zurück zum Zitat Lledó L, Torralba V, Soret A, Ramon J, Doblas-Reyes FJ (2019) Seasonal forecasts of wind power generation. Renew Energy 143:91–100CrossRef Lledó L, Torralba V, Soret A, Ramon J, Doblas-Reyes FJ (2019) Seasonal forecasts of wind power generation. Renew Energy 143:91–100CrossRef
69.
Zurück zum Zitat Ahmed T, Vu DH, Muttaqi KM, Agalgaonkar AP (2018) Load forecasting under changing climatic conditions for the city of Sydney, Australia. Energy 142:911–919CrossRefMATH Ahmed T, Vu DH, Muttaqi KM, Agalgaonkar AP (2018) Load forecasting under changing climatic conditions for the city of Sydney, Australia. Energy 142:911–919CrossRefMATH
70.
Zurück zum Zitat Engeland K, Borga M, Creutin J-D, François B, Ramos M-H, Vidal J-P (2017) Space-time variability of climate variables and intermittent renewable electricity production-a review. Renew Sustain Energy Rev 79:600–617CrossRef Engeland K, Borga M, Creutin J-D, François B, Ramos M-H, Vidal J-P (2017) Space-time variability of climate variables and intermittent renewable electricity production-a review. Renew Sustain Energy Rev 79:600–617CrossRef
71.
Zurück zum Zitat Chamorro HR, Guel-Cortez A-J, Kim E-J, Gonzalez-Longatt F, Ortega A, Martinez W (2022) Information length quantification and forecasting of power systems kinetic energy. IEEE Trans Power Syst 37(6):4473–4484CrossRefMATH Chamorro HR, Guel-Cortez A-J, Kim E-J, Gonzalez-Longatt F, Ortega A, Martinez W (2022) Information length quantification and forecasting of power systems kinetic energy. IEEE Trans Power Syst 37(6):4473–4484CrossRefMATH
72.
Zurück zum Zitat Höltinger S, Mikovits C, Schmidt J, Baumgartner J, Arheimer B, Lindström G, Wetterlund E (2019) The impact of climatic extreme events on the feasibility of fully renewable power systems: a case study for Sweden. Energy 178:695–713CrossRef Höltinger S, Mikovits C, Schmidt J, Baumgartner J, Arheimer B, Lindström G, Wetterlund E (2019) The impact of climatic extreme events on the feasibility of fully renewable power systems: a case study for Sweden. Energy 178:695–713CrossRef
73.
Zurück zum Zitat Fernández-Guillamón A, Gómez-Lázaro E, Muljadi E, Molina-García A (2019) Power systems with high renewable energy sources: a review of inertia and frequency control strategies over time. Renew Sustain Energy Rev 115:109369CrossRef Fernández-Guillamón A, Gómez-Lázaro E, Muljadi E, Molina-García A (2019) Power systems with high renewable energy sources: a review of inertia and frequency control strategies over time. Renew Sustain Energy Rev 115:109369CrossRef
74.
Zurück zum Zitat Ayyappan GS, Narayanan NK, M, RR, Pandi VR, Angel TS, Babu BR (2019) Electrical motor maintenance techniques and life cycle assessment- a review with case studies. In: 2019 2nd international conference on power and embedded drive control (ICPEDC), pp 167–172 Ayyappan GS, Narayanan NK, M, RR, Pandi VR, Angel TS, Babu BR (2019) Electrical motor maintenance techniques and life cycle assessment- a review with case studies. In: 2019 2nd international conference on power and embedded drive control (ICPEDC), pp 167–172
75.
Zurück zum Zitat Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1CrossRefMATH Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1CrossRefMATH
76.
Zurück zum Zitat Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 97(458):611–631MathSciNetCrossRefMATH Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 97(458):611–631MathSciNetCrossRefMATH
77.
Zurück zum Zitat Scrucca L, Fop M, Murphy TB, Raftery AE (2016) mclust 5: clustering, classification and density estimation using gaussian finite mixture models. R J 8(1):289CrossRefMATH Scrucca L, Fop M, Murphy TB, Raftery AE (2016) mclust 5: clustering, classification and density estimation using gaussian finite mixture models. R J 8(1):289CrossRefMATH
78.
Zurück zum Zitat Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control. John Wiley & Sons Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control. John Wiley & Sons
79.
Zurück zum Zitat He Y, Zheng Y (2018) Short-term power load probability density forecasting based on Yeo-Johnson transformation quantile regression and gaussian kernel function. Energy 154:143–156CrossRefMATH He Y, Zheng Y (2018) Short-term power load probability density forecasting based on Yeo-Johnson transformation quantile regression and gaussian kernel function. Energy 154:143–156CrossRefMATH
81.
Zurück zum Zitat Sreekumar S, Gupta A, Agarwal V, Bhakar R et al. (2016) Matrix based univariate and multivariate linear similar day approach towards short term solar radiation forecasting. In: 2016 National power systems conference (NPSC). IEEE, pp 1–5 Sreekumar S, Gupta A, Agarwal V, Bhakar R et al. (2016) Matrix based univariate and multivariate linear similar day approach towards short term solar radiation forecasting. In: 2016 National power systems conference (NPSC). IEEE, pp 1–5
82.
Zurück zum Zitat Alhmoud L, Nawafleh Q (2021) Short-term load forecasting for Jordan power system based on narx-elman neural network and arma model. IEEE Can J Electr Comput Eng 44(3):356-363CrossRef Alhmoud L, Nawafleh Q (2021) Short-term load forecasting for Jordan power system based on narx-elman neural network and arma model. IEEE Can J Electr Comput Eng 44(3):356-363CrossRef
83.
Zurück zum Zitat Sreekumar S, Verma J, Sujil A, Kumar R (2015) One day forth forecasting of hourly electrical load using genetically tuned support vector regression for smart grid frame work. In: 2015 2nd international conference on recent advances in engineering & computational sciences (RAECS). IEEE, pp 1–6 Sreekumar S, Verma J, Sujil A, Kumar R (2015) One day forth forecasting of hourly electrical load using genetically tuned support vector regression for smart grid frame work. In: 2015 2nd international conference on recent advances in engineering & computational sciences (RAECS). IEEE, pp 1–6
84.
Zurück zum Zitat Singh C, Singh N, Sood YR (2024) Restructured electricity market strategies for the Indian utility system using support vector regression and energy valley optimizer. RICO 16:100445MATH Singh C, Singh N, Sood YR (2024) Restructured electricity market strategies for the Indian utility system using support vector regression and energy valley optimizer. RICO 16:100445MATH
85.
Zurück zum Zitat Fang T, Lahdelma R (2016) Evaluation of a multiple linear regression model and sarima model in forecasting heat demand for district heating system. Appl energy 179:544–552CrossRefMATH Fang T, Lahdelma R (2016) Evaluation of a multiple linear regression model and sarima model in forecasting heat demand for district heating system. Appl energy 179:544–552CrossRefMATH
86.
Zurück zum Zitat Wooditch A, Johnson NJ, Solymosi R, Medina Ariza J, Langton S (2021) Measures of dispersion. In: A beginner’s guide to statistics for criminology and criminal justice using R. Springer, Switzerland, pp 77–88 Wooditch A, Johnson NJ, Solymosi R, Medina Ariza J, Langton S (2021) Measures of dispersion. In: A beginner’s guide to statistics for criminology and criminal justice using R. Springer, Switzerland, pp 77–88
Metadaten
Titel
Box–Cox integrated sARIMA model for day-ahead inertia forecasting
verfasst von
Rabina Ningombam
Chandransh Singh
Sreenu Sreekumar
Rohit Bhakar
Sanjeevikumar Padmanaban
Publikationsdatum
14.02.2025
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-025-02965-4