Skip to main content
Erschienen in: Health and Technology 6/2022

07.09.2022 | Original Paper

Brain tumor detection using deep ensemble model with wavelet features

verfasst von: Debendra Kumar Sahoo, Abhishek Das, Satyasis Mishra, Mihir Narayan Mohanty

Erschienen in: Health and Technology | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

A person's healthy activities are determined by the state of his or her brain. The brain is in charge of all of a person's activities. If a small abnormality develops in the brain, it will have a negative impact on the person regardless of whether the other organs are in good condition. As a result, early detection of any abnormal growth in the brain is essential.

Methods

In this work, the authors have utilized data pre-processing using discrete wavelet transform (DWT) and segmentation, whereas, for detection, an ensemble learning technique is proposed. DWT and segmentation help in increasing the dataset size that is used to train the deep learning model. Segmentation using supervised Auto-encoder (AE) is used for data enhancement to strengthen the training process. The original data, outputs of DWT, and segmented images are utilized for the training of the ensemble model designed with three parallel-connected convolutional neural networks (CNNs).

Results

The detection results obtained from the ensemble of these recurrent models are then passed through the Multilayer Perceptron (MLP) for final detection. Kaggle brain MRI image dataset is used to complete the proposed method. Test accuracy, F1-score, precision, sensitivity, and specificity provided by this method are 98.08%, 0.9836, 1.0000, 0.9677, and 1.0000 respectively. In comparison to state-of-the-art models, the proposed model produces competitive outcomes.

Conclusion

In time detection of the tumor may lead to the survival of the patient. Automatic and accurate detection is another perspective of this field. For this purpose, we have proposed a deep ensemble model with wavelet features. The ensemble model provides increased performance in comparison to single models due to the parallel training.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mohan G, Subashini MM. MRI based medical image analysis: Survey on brain tumor grade classification. Biomed Signal Process Control. 2018;39:139–61.CrossRef Mohan G, Subashini MM. MRI based medical image analysis: Survey on brain tumor grade classification. Biomed Signal Process Control. 2018;39:139–61.CrossRef
2.
Zurück zum Zitat Ker J, Singh SP, Bai Y, Rao J, Lim T, Wang L. Image thresholding improves 3-dimensional convolutional neural network diagnosis of different acute brain hemorrhages on computed tomography scans. Sensors. 2019;19(9):2167.CrossRef Ker J, Singh SP, Bai Y, Rao J, Lim T, Wang L. Image thresholding improves 3-dimensional convolutional neural network diagnosis of different acute brain hemorrhages on computed tomography scans. Sensors. 2019;19(9):2167.CrossRef
3.
Zurück zum Zitat Ker J, Bai Y, Lee HY, Rao J, Wang L. Automated brain histology classification using machine learning. J Clin Neurosci. 2019;66:239–45.CrossRef Ker J, Bai Y, Lee HY, Rao J, Wang L. Automated brain histology classification using machine learning. J Clin Neurosci. 2019;66:239–45.CrossRef
4.
Zurück zum Zitat Ker J, Wang L, Rao J, Lim T. Deep learning applications in medical image analysis. Ieee Access. 2017;6:9375–89.CrossRef Ker J, Wang L, Rao J, Lim T. Deep learning applications in medical image analysis. Ieee Access. 2017;6:9375–89.CrossRef
5.
Zurück zum Zitat Bai X, Niwas SI, Lin W, Ju BF, Kwoh CK, Wang L, Sng CC, Aquino MC, Chew PT. Learning ECOC code matrix for multiclass classification with application to glaucoma diagnosis. J Med Syst. 2016;40(4):1–10.CrossRef Bai X, Niwas SI, Lin W, Ju BF, Kwoh CK, Wang L, Sng CC, Aquino MC, Chew PT. Learning ECOC code matrix for multiclass classification with application to glaucoma diagnosis. J Med Syst. 2016;40(4):1–10.CrossRef
6.
Zurück zum Zitat He G, B., Cui, J., Xiao, B., and Wang, X. Image analysis by two types of Franklin-Fourier moments. IEEE/CAA Journal of Automatica Sinica. 2019;6(4):1036–51.MathSciNetCrossRef He G, B., Cui, J., Xiao, B., and Wang, X. Image analysis by two types of Franklin-Fourier moments. IEEE/CAA Journal of Automatica Sinica. 2019;6(4):1036–51.MathSciNetCrossRef
7.
Zurück zum Zitat Mitra S, Shankar BU. Medical image analysis for cancer management in natural computing framework. Inf Sci. 2015;306:111–31.CrossRef Mitra S, Shankar BU. Medical image analysis for cancer management in natural computing framework. Inf Sci. 2015;306:111–31.CrossRef
8.
Zurück zum Zitat Jyoti A, Mohanty MN, Kumar MP. Morphological based segmentation of brain image for tumor detection. In 2014 International Conference on Electronics and Communication Systems (ICECS) 2014;1–5. IEEE. Jyoti A, Mohanty MN, Kumar MP. Morphological based segmentation of brain image for tumor detection. In 2014 International Conference on Electronics and Communication Systems (ICECS) 2014;1–5. IEEE.
9.
Zurück zum Zitat Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80.CrossRef Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80.CrossRef
10.
Zurück zum Zitat Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. 2014. arXiv preprint arXiv:1412.3555. Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. 2014. arXiv preprint arXiv:​1412.​3555.
11.
Zurück zum Zitat Das A, Patra, GR, Mohanty MN. LSTM based Odia handwritten numeral recognition. In 2020 international conference on communication and signal processing (ICCSP). 2020;0538–0541. IEEE. Das A, Patra, GR, Mohanty MN. LSTM based Odia handwritten numeral recognition. In 2020 international conference on communication and signal processing (ICCSP). 2020;0538–0541. IEEE.
12.
Zurück zum Zitat Jia Z, Chen D. Brain Tumor Identification and Classification of MRI images using deep learning techniques. IEEE Access. 2020. Jia Z, Chen D. Brain Tumor Identification and Classification of MRI images using deep learning techniques. IEEE Access. 2020.
13.
Zurück zum Zitat Majib MS, Rahman MM, Sazzad TS, Khan NI, Dey SK. VGG-SCNet: A VGG Net-Based Deep Learning Framework for Brain Tumor Detection on MRI Images. IEEE Access. 2021;9:116942–52.CrossRef Majib MS, Rahman MM, Sazzad TS, Khan NI, Dey SK. VGG-SCNet: A VGG Net-Based Deep Learning Framework for Brain Tumor Detection on MRI Images. IEEE Access. 2021;9:116942–52.CrossRef
14.
Zurück zum Zitat Mallick PK, Ryu SH, Satapathy SK, Mishra S, Nguyen GN, Tiwari P. Brain MRI image classification for cancer detection using deep wavelet autoencoder-based deep neural network. IEEE Access. 2019;7:46278–87.CrossRef Mallick PK, Ryu SH, Satapathy SK, Mishra S, Nguyen GN, Tiwari P. Brain MRI image classification for cancer detection using deep wavelet autoencoder-based deep neural network. IEEE Access. 2019;7:46278–87.CrossRef
15.
Zurück zum Zitat Khan P, Kader MF, Islam SR, Rahman AB, Kamal MS, Toha MU, Kwak KS. Machine Learning and Deep Learning Approaches for Brain Disease Diagnosis: Principles and Recent Advances. IEEE Access. 2021;9:37622–55.CrossRef Khan P, Kader MF, Islam SR, Rahman AB, Kamal MS, Toha MU, Kwak KS. Machine Learning and Deep Learning Approaches for Brain Disease Diagnosis: Principles and Recent Advances. IEEE Access. 2021;9:37622–55.CrossRef
16.
Zurück zum Zitat Çelik G, Talu MF. A new 3D MRI segmentation method based on Generative Adversarial Network and Atrous Convolution. Biomed Signal Process Control. 2022;71: 103155.CrossRef Çelik G, Talu MF. A new 3D MRI segmentation method based on Generative Adversarial Network and Atrous Convolution. Biomed Signal Process Control. 2022;71: 103155.CrossRef
17.
Zurück zum Zitat Dikici E, Ryu JL, Demirer M, Bigelow M, White RD, Slone W, Prevedello LM. Automated brain metastases detection framework for T1-weighted contrast-enhanced 3D MRI. IEEE J Biomed Health Inform. 2020;24(10):2883–93.CrossRef Dikici E, Ryu JL, Demirer M, Bigelow M, White RD, Slone W, Prevedello LM. Automated brain metastases detection framework for T1-weighted contrast-enhanced 3D MRI. IEEE J Biomed Health Inform. 2020;24(10):2883–93.CrossRef
18.
Zurück zum Zitat Takrouni W, Douik A. Improving geometric P-norm-based glioma segmentation through deep convolutional autoencoder encapsulation. Biomed Signal Process Control. 2022;71: 103232.CrossRef Takrouni W, Douik A. Improving geometric P-norm-based glioma segmentation through deep convolutional autoencoder encapsulation. Biomed Signal Process Control. 2022;71: 103232.CrossRef
19.
Zurück zum Zitat Noreen N, Palaniappan S, Qayyum A, Ahmad I, Imran M, Shoaib M. A deep learning model based on concatenation approach for the diagnosis of brain tumor. IEEE Access. 2020;8:55135–44.CrossRef Noreen N, Palaniappan S, Qayyum A, Ahmad I, Imran M, Shoaib M. A deep learning model based on concatenation approach for the diagnosis of brain tumor. IEEE Access. 2020;8:55135–44.CrossRef
20.
Zurück zum Zitat Li M, Kuang L, Xu S, Sha Z. Brain tumor detection based on multimodal information fusion and convolutional neural network. IEEE Access. 2019;7:180134–46.CrossRef Li M, Kuang L, Xu S, Sha Z. Brain tumor detection based on multimodal information fusion and convolutional neural network. IEEE Access. 2019;7:180134–46.CrossRef
21.
Zurück zum Zitat Sekhar A, Biswas S, Hazra R, Sunaniya AK, Mukherjee A, Yang L. Brain tumor classification using fine-tuned GoogLeNet features and machine learning algorithms: IoMT enabled CAD system. IEEE J Biomed Health Inform. 2021. Sekhar A, Biswas S, Hazra R, Sunaniya AK, Mukherjee A, Yang L. Brain tumor classification using fine-tuned GoogLeNet features and machine learning algorithms: IoMT enabled CAD system. IEEE J Biomed Health Inform. 2021.
22.
Zurück zum Zitat Hao Q, Pei Y, Zhou R, Sun B, Sun J, Li S, Kang X. Fusing Multiple Deep Models for In Vivo Human Brain Hyperspectral Image Classification to Identify Glioblastoma Tumor. IEEE Trans Instrum Meas. 2021;70:1–14. Hao Q, Pei Y, Zhou R, Sun B, Sun J, Li S, Kang X. Fusing Multiple Deep Models for In Vivo Human Brain Hyperspectral Image Classification to Identify Glioblastoma Tumor. IEEE Trans Instrum Meas. 2021;70:1–14.
23.
Zurück zum Zitat Tang Z, Yap PT, Shen D. A new multi-atlas registration framework for multimodal pathological images using conventional monomodal normal atlases. IEEE Trans Image Process. 2018;28(5):2293–304.MathSciNetCrossRef Tang Z, Yap PT, Shen D. A new multi-atlas registration framework for multimodal pathological images using conventional monomodal normal atlases. IEEE Trans Image Process. 2018;28(5):2293–304.MathSciNetCrossRef
24.
Zurück zum Zitat Ghassemi N, Shoeibi A, Rouhani M. Deep neural network with generative adversarial networks pre-training for brain tumor classification based on MR images. Biomed Signal Process Control. 2020;57: 101678.CrossRef Ghassemi N, Shoeibi A, Rouhani M. Deep neural network with generative adversarial networks pre-training for brain tumor classification based on MR images. Biomed Signal Process Control. 2020;57: 101678.CrossRef
25.
Zurück zum Zitat Chandra SK, Bajpai MK. Fractional Crank-Nicolson finite difference method for benign brain tumor detection and segmentation. Biomed Signal Process Control. 2020;60: 102002.CrossRef Chandra SK, Bajpai MK. Fractional Crank-Nicolson finite difference method for benign brain tumor detection and segmentation. Biomed Signal Process Control. 2020;60: 102002.CrossRef
26.
Zurück zum Zitat Nema S, Dudhane A, Murala S, Naidu S. RescueNet: An unpaired GAN for brain tumor segmentation. Biomed Signal Process Control. 2020;55: 101641.CrossRef Nema S, Dudhane A, Murala S, Naidu S. RescueNet: An unpaired GAN for brain tumor segmentation. Biomed Signal Process Control. 2020;55: 101641.CrossRef
27.
Zurück zum Zitat Ghahfarrokhi SS, Khodadadi H. Human brain tumor diagnosis using the combination of the complexity measures and texture features through magnetic resonance image. Biomed Signal Process Control. 2020;61: 102025.CrossRef Ghahfarrokhi SS, Khodadadi H. Human brain tumor diagnosis using the combination of the complexity measures and texture features through magnetic resonance image. Biomed Signal Process Control. 2020;61: 102025.CrossRef
28.
Zurück zum Zitat Karayegen G, Aksahin MF. Brain tumor prediction on MR images with semantic segmentation by using deep learning network and 3D imaging of tumor region. Biomed Signal Process Control. 2021;66: 102458.CrossRef Karayegen G, Aksahin MF. Brain tumor prediction on MR images with semantic segmentation by using deep learning network and 3D imaging of tumor region. Biomed Signal Process Control. 2021;66: 102458.CrossRef
29.
Zurück zum Zitat Rai HM, Chatterjee K, Dashkevich S. Automatic and accurate abnormality detection from brain MR images using a novel hybrid UnetResNext-50 deep CNN model. Biomed Signal Process Control. 2021;66: 102477.CrossRef Rai HM, Chatterjee K, Dashkevich S. Automatic and accurate abnormality detection from brain MR images using a novel hybrid UnetResNext-50 deep CNN model. Biomed Signal Process Control. 2021;66: 102477.CrossRef
30.
Zurück zum Zitat Hedayati R, Khedmati M, Taghipour-Gorjikolaie M. Deep feature extraction method based on ensemble of convolutional auto encoders: Application to Alzheimer’s disease diagnosis. Biomed Signal Process Control. 2021;66: 102397.CrossRef Hedayati R, Khedmati M, Taghipour-Gorjikolaie M. Deep feature extraction method based on ensemble of convolutional auto encoders: Application to Alzheimer’s disease diagnosis. Biomed Signal Process Control. 2021;66: 102397.CrossRef
31.
Zurück zum Zitat Aghalari M, Aghagolzadeh A, Ezoji M. Brain tumor image segmentation via asymmetric/symmetric UNet based on two-pathway-residual blocks. Biomed Signal Process Control. 2021;69: 102841.CrossRef Aghalari M, Aghagolzadeh A, Ezoji M. Brain tumor image segmentation via asymmetric/symmetric UNet based on two-pathway-residual blocks. Biomed Signal Process Control. 2021;69: 102841.CrossRef
32.
Zurück zum Zitat Das A, Mohapatra SK, Mohanty MN. Design of deep ensemble classifier with fuzzy decision method for biomedical image classification. Appl Soft Comput. 2022;115: 108178.CrossRef Das A, Mohapatra SK, Mohanty MN. Design of deep ensemble classifier with fuzzy decision method for biomedical image classification. Appl Soft Comput. 2022;115: 108178.CrossRef
33.
Zurück zum Zitat Das A, Mohanty MN, Mallick PK, Tiwari P, Muhammad K, Zhu H. Breast cancer detection using an ensemble deep learning method. Biomed Signal Process Control. 2021;70: 103009.CrossRef Das A, Mohanty MN, Mallick PK, Tiwari P, Muhammad K, Zhu H. Breast cancer detection using an ensemble deep learning method. Biomed Signal Process Control. 2021;70: 103009.CrossRef
34.
Zurück zum Zitat Xiao L, Wan X, Han Z. PHY-layer authentication with multiple landmarks with reduced overhead. IEEE Trans Wireless Commun. 2017;17(3):1676–87.CrossRef Xiao L, Wan X, Han Z. PHY-layer authentication with multiple landmarks with reduced overhead. IEEE Trans Wireless Commun. 2017;17(3):1676–87.CrossRef
35.
Zurück zum Zitat Xiao L, Wan X, Lu X, Zhang Y, Wu D. IoT security techniques based on machine learning: How do IoT devices use AI to enhance security? IEEE Signal Process Mag. 2018;35(5):41–9.CrossRef Xiao L, Wan X, Lu X, Zhang Y, Wu D. IoT security techniques based on machine learning: How do IoT devices use AI to enhance security? IEEE Signal Process Mag. 2018;35(5):41–9.CrossRef
36.
Zurück zum Zitat Deng L, Platt J. Ensemble deep learning for speech recognition. In Proc. interspeech. 2014. Deng L, Platt J. Ensemble deep learning for speech recognition. In Proc. interspeech. 2014.
37.
Zurück zum Zitat Xu L, Jiang JH, Zhou YP, Wu HL, Shen GL, Yu RQ. MCCV stacked regression for model combination and fast spectral interval selection in multivariate calibration. Chemom Intell Lab Syst. 2007;87(2):226–30.CrossRef Xu L, Jiang JH, Zhou YP, Wu HL, Shen GL, Yu RQ. MCCV stacked regression for model combination and fast spectral interval selection in multivariate calibration. Chemom Intell Lab Syst. 2007;87(2):226–30.CrossRef
38.
Zurück zum Zitat Sakkis G, Androutsopoulos I, Paliouras G, Karkaletsis V, Spyropoulos CD, Stamatopoulos P. Stacking classifiers for anti-spam filtering of e-mail. 2001. arXiv preprint cs/0106040. Sakkis G, Androutsopoulos I, Paliouras G, Karkaletsis V, Spyropoulos CD, Stamatopoulos P. Stacking classifiers for anti-spam filtering of e-mail. 2001. arXiv preprint cs/0106040.
39.
Zurück zum Zitat Aversano T, L., Bernardi, M. L., and Cimitile, M. Water stress classification using Convolutional Deep Neural Networks. J Univ Comput Sci. 2022;28(3):311–28. Aversano T, L., Bernardi, M. L., and Cimitile, M. Water stress classification using Convolutional Deep Neural Networks. J Univ Comput Sci. 2022;28(3):311–28.
40.
Zurück zum Zitat Taştimur CANAN, Akın E. Fastener Classification Using One-Shot Learning with Siamese Convolution Networks. J Univ Comput Sci. 2022;28(1). Taştimur CANAN, Akın E. Fastener Classification Using One-Shot Learning with Siamese Convolution Networks. J Univ Comput Sci. 2022;28(1).
41.
Zurück zum Zitat Suong LK, Kwon J. Detection of Potholes Using a Deep Convolutional Neural Network. J Univ Comput Sci. 2018;24(9):1244–1257 Suong LK, Kwon J. Detection of Potholes Using a Deep Convolutional Neural Network. J Univ Comput Sci. 2018;24(9):1244–1257
42.
Zurück zum Zitat Krstinic D, Braovic M, Bozic-Stulic D. Convolutional Neural Networks and Transfer Learning Based Classification of Natural Landscape Images. J Univ Comput Sci. 2020;26(2):244–67. Krstinic D, Braovic M, Bozic-Stulic D. Convolutional Neural Networks and Transfer Learning Based Classification of Natural Landscape Images. J Univ Comput Sci. 2020;26(2):244–67.
43.
Zurück zum Zitat Das AK, Pati SK, Huang HH, Chen CK. Cancer Classification by Gene Subset Selection from Microarray Dataset. J Univers Comput Sci. 2018;24(6):682–710.MathSciNet Das AK, Pati SK, Huang HH, Chen CK. Cancer Classification by Gene Subset Selection from Microarray Dataset. J Univers Comput Sci. 2018;24(6):682–710.MathSciNet
44.
Zurück zum Zitat Demirci MERVE, Sağıroğlu ŞEREF. TwitterBulletin: An Intelligent and Real-Time Automated News Categorization Tool for Twitter. J Univ Comput Sci. 2022;28. Demirci MERVE, Sağıroğlu ŞEREF. TwitterBulletin: An Intelligent and Real-Time Automated News Categorization Tool for Twitter. J Univ Comput Sci. 2022;28.
45.
Zurück zum Zitat Panda S, Das A, Mishra S, Mohanty MN. Epileptic seizure detection using deep ensemble network with empirical wavelet transform. Measurement Science Review. 2021;21(4):110–6.CrossRef Panda S, Das A, Mishra S, Mohanty MN. Epileptic seizure detection using deep ensemble network with empirical wavelet transform. Measurement Science Review. 2021;21(4):110–6.CrossRef
46.
Zurück zum Zitat Nguyen TT, Nguyen MP, Pham XC, Liew AWC. Heterogeneous classifier ensemble with fuzzy rule-based meta learner. Inf Sci. 2018;422:144–60.CrossRef Nguyen TT, Nguyen MP, Pham XC, Liew AWC. Heterogeneous classifier ensemble with fuzzy rule-based meta learner. Inf Sci. 2018;422:144–60.CrossRef
47.
Zurück zum Zitat Das A, Mohanty MN. Design of Encoder in CNN for Effective Recognition of Odia Numerals. In 2021 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology (ODICON). 2021;1–3. IEEE. Das A, Mohanty MN. Design of Encoder in CNN for Effective Recognition of Odia Numerals. In 2021 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology (ODICON). 2021;1–3. IEEE.
49.
Zurück zum Zitat Huang Z, Du X, Chen L, Li Y, Liu M, Chou Y, Jin L. Convolutional neural network based on complex networks for brain tumor image classification with a modified activation function. IEEE Access. 2020;8:89281–90.CrossRef Huang Z, Du X, Chen L, Li Y, Liu M, Chou Y, Jin L. Convolutional neural network based on complex networks for brain tumor image classification with a modified activation function. IEEE Access. 2020;8:89281–90.CrossRef
50.
Zurück zum Zitat Huda S, Yearwood J, Jelinek HF, Hassan MM, Fortino G, Buckland M. A hybrid feature selection with ensemble classification for imbalanced healthcare data: A case study for brain tumor diagnosis. IEEE access. 2016;4:9145–54.CrossRef Huda S, Yearwood J, Jelinek HF, Hassan MM, Fortino G, Buckland M. A hybrid feature selection with ensemble classification for imbalanced healthcare data: A case study for brain tumor diagnosis. IEEE access. 2016;4:9145–54.CrossRef
51.
Zurück zum Zitat Ge C, Gu IYH, Jakola AS, Yang J. Enlarged training dataset by pairwise GANs for molecular-based brain tumor classification. IEEE Access. 2020;8:22560–70.CrossRef Ge C, Gu IYH, Jakola AS, Yang J. Enlarged training dataset by pairwise GANs for molecular-based brain tumor classification. IEEE Access. 2020;8:22560–70.CrossRef
52.
Zurück zum Zitat Ertosun MG, Rubin DL. Automated grading of gliomas using deep learning in digital pathology images: A modular approach with ensemble of convolutional neural networks. In AMIA Annual Symposium Proceedings. 2015; 2015:1899. American Medical Informatics Association. Ertosun MG, Rubin DL. Automated grading of gliomas using deep learning in digital pathology images: A modular approach with ensemble of convolutional neural networks. In AMIA Annual Symposium Proceedings. 2015; 2015:1899. American Medical Informatics Association.
Metadaten
Titel
Brain tumor detection using deep ensemble model with wavelet features
verfasst von
Debendra Kumar Sahoo
Abhishek Das
Satyasis Mishra
Mihir Narayan Mohanty
Publikationsdatum
07.09.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Health and Technology / Ausgabe 6/2022
Print ISSN: 2190-7188
Elektronische ISSN: 2190-7196
DOI
https://doi.org/10.1007/s12553-022-00699-y

Weitere Artikel der Ausgabe 6/2022

Health and Technology 6/2022 Zur Ausgabe