Skip to main content

30.11.2024

Braking Detection and Prediction with Inter-vehicle Distance Estimated from Driving Videos

verfasst von: Hanwei Zhang, Shintaro Ono, Hiroshi Kawasaki

Erschienen in: International Journal of Intelligent Transportation Systems Research

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Heavy braking is a common driving behaviour that indicates a possible traffic hazard. To avoid traffic accidents, detecting and predicting braking events are essential to inform the driver to take action beforehand. Recently, machine learning driven by probe data has been applied to analyze braking events. However, the causes of heavy braking are complex, and utilizing solely the probe data from drive recorders is insufficient for effectively analyzing the braking events. In this study, we first present a comprehensive analysis of braking causes through human annotation from driving videos. Through manual annotation, we distinguish the misjudgments of braking events introduced by the accelerometers. We subsequently build models to detect and predict braking events based on the annotation. To increase the performance, we propose to utilize instance segmentation and monocular depth estimation to approximate the inter-vehicle distance from driving videos, and treat it as a feature in the machine learning model in addition to probe data. Experimental results demonstrate that maintaining inter-vehicle distance is an important cause of braking and our models improve the performance compared to previous probe-data-only models by incorporating the distance information.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Bescos, B., Campos, C., Tardós, J.D., Neira, J.: Dynaslam ii: Tightly-coupled multi-object tracking and slam. IEEE Robot. Automat. Lett. 6(3), 5191–5198 (2021)CrossRef Bescos, B., Campos, C., Tardós, J.D., Neira, J.: Dynaslam ii: Tightly-coupled multi-object tracking and slam. IEEE Robot. Automat. Lett. 6(3), 5191–5198 (2021)CrossRef
2.
Zurück zum Zitat Bescos, B., Fácil, J.M., Civera, J., Neira, J.: Dynaslam: Tracking, mapping, and inpainting in dynamic scenes. IEEE Robot. Automat. Lett. 3(4), 4076–4083 (2018)CrossRef Bescos, B., Fácil, J.M., Civera, J., Neira, J.: Dynaslam: Tracking, mapping, and inpainting in dynamic scenes. IEEE Robot. Automat. Lett. 3(4), 4076–4083 (2018)CrossRef
3.
4.
Zurück zum Zitat Drobot, S., Chapman, M., Schuler, E., Wiener, G., Mahoney, W., III., Pisano, P., McKeever, B.: Improving road weather hazard products with vehicle probe data: Vehicle data translator quality-checking procedures. Trans. Res. Record 2169(1), 128–140 (2010)CrossRef Drobot, S., Chapman, M., Schuler, E., Wiener, G., Mahoney, W., III., Pisano, P., McKeever, B.: Improving road weather hazard products with vehicle probe data: Vehicle data translator quality-checking procedures. Trans. Res. Record 2169(1), 128–140 (2010)CrossRef
5.
Zurück zum Zitat Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 611–625 (2017)CrossRef Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 611–625 (2017)CrossRef
6.
Zurück zum Zitat Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Annal. Stat. pp. 1189–1232 (2001) Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Annal. Stat. pp. 1189–1232 (2001)
7.
Zurück zum Zitat Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: 2012 IEEE Conference On Computer Vision And Pattern Recognition, pp. 3354–3361. IEEE (2012) Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: 2012 IEEE Conference On Computer Vision And Pattern Recognition, pp. 3354–3361. IEEE (2012)
8.
Zurück zum Zitat Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: CVPR (2017) Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: CVPR (2017)
9.
Zurück zum Zitat Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3828–3838 (2019) Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3828–3838 (2019)
10.
Zurück zum Zitat He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017) He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
11.
Zurück zum Zitat He, Z., Zheng, L., Chen, P., Guan, W.: Mapping to cells: a simple method to extract traffic dynamics from probe vehicle data. Computer-Aided Civil Infrastruct. Eng. 32(3), 252–267 (2017)CrossRef He, Z., Zheng, L., Chen, P., Guan, W.: Mapping to cells: a simple method to extract traffic dynamics from probe vehicle data. Computer-Aided Civil Infrastruct. Eng. 32(3), 252–267 (2017)CrossRef
12.
Zurück zum Zitat Huang, J., Yang, S., Mu, T.J., Hu, S.M.: Clustervo: Clustering moving instances and estimating visual odometry for self and surroundings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2168–2177 (2020) Huang, J., Yang, S., Mu, T.J., Hu, S.M.: Clustervo: Clustering moving instances and estimating visual odometry for self and surroundings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2168–2177 (2020)
13.
Zurück zum Zitat Hunter, T., Herring, R., Abbeel, P., Bayen, A.: Path and travel time inference from gps probe vehicle data. NIPS Analyzing Netw. Learn. Graphs 12(1), 2 (2009) Hunter, T., Herring, R., Abbeel, P., Bayen, A.: Path and travel time inference from gps probe vehicle data. NIPS Analyzing Netw. Learn. Graphs 12(1), 2 (2009)
14.
Zurück zum Zitat Kawatani, T., Itoh, E., Hirokawa, S., Mine, T.: Location does not always determine sudden braking. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 875–882. IEEE (2019) Kawatani, T., Itoh, E., Hirokawa, S., Mine, T.: Location does not always determine sudden braking. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 875–882. IEEE (2019)
15.
Zurück zum Zitat Kawatani, T., Itoh, E., Hirokawa, S., Mine, T.: Machine learning and visualization of sudden braking using probe data. In: 2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI), pp. 67–72. IEEE (2019) Kawatani, T., Itoh, E., Hirokawa, S., Mine, T.: Machine learning and visualization of sudden braking using probe data. In: 2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI), pp. 67–72. IEEE (2019)
16.
Zurück zum Zitat Lee, J.H., Han, M.K., Ko, D.W., Suh, I.H.: From big to small: Multi-scale local planar guidance for monocular depth estimation. (2019). arXiv:1907.10326 Lee, J.H., Han, M.K., Ko, D.W., Suh, I.H.: From big to small: Multi-scale local planar guidance for monocular depth estimation. (2019). arXiv:​1907.​10326
17.
Zurück zum Zitat Li, P., Qin, T., et al.: Stereo vision-based semantic 3d object and ego-motion tracking for autonomous driving. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 646–661 (2018) Li, P., Qin, T., et al.: Stereo vision-based semantic 3d object and ego-motion tracking for autonomous driving. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 646–661 (2018)
18.
Zurück zum Zitat Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017) Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
19.
Zurück zum Zitat Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco: Common objects in context. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pp. 740–755. Springer (2014) Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco: Common objects in context. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pp. 740–755. Springer (2014)
20.
Zurück zum Zitat Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)CrossRef Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)CrossRef
21.
Zurück zum Zitat Nanthawichit, C., Nakatsuji, T., Suzuki, H.: Application of probe-vehicle data for real-time traffic-state estimation and short-term travel-time prediction on a freeway. Trans. Res. Record 1855(1), 49–59 (2003) Nanthawichit, C., Nakatsuji, T., Suzuki, H.: Application of probe-vehicle data for real-time traffic-state estimation and short-term travel-time prediction on a freeway. Trans. Res. Record 1855(1), 49–59 (2003)
22.
Zurück zum Zitat Park, H., Haghani, A.: Real-time prediction of secondary incident occurrences using vehicle probe data. Trans. Res. Part C: Emerging Technol. 70, 69–85 (2016)CrossRef Park, H., Haghani, A.: Real-time prediction of secondary incident occurrences using vehicle probe data. Trans. Res. Part C: Emerging Technol. 70, 69–85 (2016)CrossRef
23.
Zurück zum Zitat Sato, Y., Kawatani, T., Mine, T.: Influence of weather features in determining sudden braking. Int. J. Intell. Trans. Syst. Res. 19, 366–377 (2021) Sato, Y., Kawatani, T., Mine, T.: Influence of weather features in determining sudden braking. Int. J. Intell. Trans. Syst. Res. 19, 366–377 (2021)
24.
Zurück zum Zitat Sekuła, P., Marković, N., Vander Laan, Z., Sadabadi, K.F.: Estimating historical hourly traffic volumes via machine learning and vehicle probe data: A maryland case study. Trans. Res. Part C: Emerging Technol. 97, 147–158 (2018)CrossRef Sekuła, P., Marković, N., Vander Laan, Z., Sadabadi, K.F.: Estimating historical hourly traffic volumes via machine learning and vehicle probe data: A maryland case study. Trans. Res. Part C: Emerging Technol. 97, 147–158 (2018)CrossRef
25.
Zurück zum Zitat Sheng, C., Pan, S., Gao, W., Tan, Y., Zhao, T.: Dynamic-dso: direct sparse odometry using objects semantic information for dynamic environments. Appl. Sci. 10(4), 1467 (2020)CrossRef Sheng, C., Pan, S., Gao, W., Tan, Y., Zhao, T.: Dynamic-dso: direct sparse odometry using objects semantic information for dynamic environments. Appl. Sci. 10(4), 1467 (2020)CrossRef
27.
Zurück zum Zitat Xiao, L., Wang, J., Qiu, X., Rong, Z., Zou, X.: Dynamic-slam: Semantic monocular visual localization and mapping based on deep learning in dynamic environment. Robot. Autonomous Syst. 117, 1–16 (2019)CrossRef Xiao, L., Wang, J., Qiu, X., Rong, Z., Zou, X.: Dynamic-slam: Semantic monocular visual localization and mapping based on deep learning in dynamic environment. Robot. Autonomous Syst. 117, 1–16 (2019)CrossRef
28.
Zurück zum Zitat Yang, L., Kang, B., Huang, Z., Xu, X., Feng, J., Zhao, H.: Depth anything: Unleashing the power of large-scale unlabeled data. (2024). arXiv:2401.10891 Yang, L., Kang, B., Huang, Z., Xu, X., Feng, J., Zhao, H.: Depth anything: Unleashing the power of large-scale unlabeled data. (2024). arXiv:​2401.​10891
29.
Zurück zum Zitat Zhang, H., Uchiyama, H., Ono, S., Kawasaki, H.: Motslam: Mot-assisted monocular dynamic slam using single-view depth estimation. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4865–4872. IEEE (2022) Zhang, H., Uchiyama, H., Ono, S., Kawasaki, H.: Motslam: Mot-assisted monocular dynamic slam using single-view depth estimation. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4865–4872. IEEE (2022)
Metadaten
Titel
Braking Detection and Prediction with Inter-vehicle Distance Estimated from Driving Videos
verfasst von
Hanwei Zhang
Shintaro Ono
Hiroshi Kawasaki
Publikationsdatum
30.11.2024
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-024-00449-6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.