Skip to main content
Erschienen in:

20.06.2024

BranchFusionNet: An energy-efficient lightweight framework for superior retinal vessel segmentation

verfasst von: Jing Qin, Zhiguang Qin, Peng Xiao

Erschienen in: Peer-to-Peer Networking and Applications | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Der Artikel stellt BranchFusionNet vor, ein neuartiges neuronales Netzwerk zur energieeffizienten und leichten Segmentierung retinaler Gefäße. Dieses Rahmenwerk befasst sich mit den Herausforderungen der Erkennung komplizierter Netzhautgefäße, die für die Diagnose von Erkrankungen wie der diabetischen Retinopathie von entscheidender Bedeutung sind. BranchFusionNet reduziert die Rechenkomplexität, indem es branchenübergreifende Module und leichtgewichtige zweibranchige Designs integriert und gleichzeitig eine hohe Genauigkeit beibehält. Die Methode wurde anhand öffentlicher Datensätze wie DRIVE, STARE und CHASE _ DB1 validiert und zeigte im Vergleich zu bestehenden Methoden eine überlegene Leistung bei Genauigkeit, Sensitivität und F1-Werten. Die innovative Architektur von BranchFusionNet bietet eine vielversprechende Lösung für eine nachhaltige und effektive medizinische Bildgebung, insbesondere in Umgebungen mit begrenzten Ressourcen im Gesundheitswesen.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ruamviboonsuk P, Tiwari R, Sayres R, Nganthavee V, Hemarat K, Kongprayoon A, Raman R, Levinstein B, Liu Y, Schaekermann M et al (2022) Real-time diabetic retinopathy screening by deep learning in a multisite national screening programme: a prospective interventional cohort study. Lancet Digital Health 4(4):235–244CrossRef Ruamviboonsuk P, Tiwari R, Sayres R, Nganthavee V, Hemarat K, Kongprayoon A, Raman R, Levinstein B, Liu Y, Schaekermann M et al (2022) Real-time diabetic retinopathy screening by deep learning in a multisite national screening programme: a prospective interventional cohort study. Lancet Digital Health 4(4):235–244CrossRef
2.
Zurück zum Zitat Manan MA, Khan TM, Saadat A, Arsalan M, Naqvi SS (2022) A residual encoder-decoder network for segmentation of retinal image-based exudates in diabetic retinopathy screening. arXiv preprint arXiv:2201.05963 Manan MA, Khan TM, Saadat A, Arsalan M, Naqvi SS (2022) A residual encoder-decoder network for segmentation of retinal image-based exudates in diabetic retinopathy screening. arXiv preprint arXiv:​2201.​05963
3.
Zurück zum Zitat Khan TM, Robles-Kelly A, Naqvi SS, Arsalan M (2021) Residual multiscale full convolutional network (rm-fcn) for high resolution semantic segmentation of retinal vasculature. In: Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR International Workshops, S+ SSPR 2020, Padua, Italy, January 21–22, 2021, Proceedings, pp. 324–333. Springer Khan TM, Robles-Kelly A, Naqvi SS, Arsalan M (2021) Residual multiscale full convolutional network (rm-fcn) for high resolution semantic segmentation of retinal vasculature. In: Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR International Workshops, S+ SSPR 2020, Padua, Italy, January 21–22, 2021, Proceedings, pp. 324–333. Springer
4.
Zurück zum Zitat Khan TM, Khan MA, Rehman NU, Naveed K, Afridi IU, Naqvi SS, Raazak I (2022) Width-wise vessel bifurcation for improved retinal vessel segmentation. Biomed Signal Process Control 71:103169CrossRef Khan TM, Khan MA, Rehman NU, Naveed K, Afridi IU, Naqvi SS, Raazak I (2022) Width-wise vessel bifurcation for improved retinal vessel segmentation. Biomed Signal Process Control 71:103169CrossRef
5.
Zurück zum Zitat Arsalan M, Khan TM, Naqvi SS, Nawaz M, Razzak I (2022) Prompt deep light-weight vessel segmentation network (plvs-net). IEEE/ACM Trans Comput Biol Bioinf 20(2):1363–1371CrossRef Arsalan M, Khan TM, Naqvi SS, Nawaz M, Razzak I (2022) Prompt deep light-weight vessel segmentation network (plvs-net). IEEE/ACM Trans Comput Biol Bioinf 20(2):1363–1371CrossRef
6.
Zurück zum Zitat Khandouzi A, Ariafar A, Mashayekhpour Z, Pazira M, Baleghi Y (2022) Retinal vessel segmentation, a review of classic and deep methods. Ann Biomed Eng 50(10):1292–1314CrossRef Khandouzi A, Ariafar A, Mashayekhpour Z, Pazira M, Baleghi Y (2022) Retinal vessel segmentation, a review of classic and deep methods. Ann Biomed Eng 50(10):1292–1314CrossRef
7.
Zurück zum Zitat Iqbal S, Khan TM, Naveed K, Naqvi SS, Nawaz SJ (2022) Recent trends and advances in fundus image analysis: A review. Comput Biol Med, p 106277 Iqbal S, Khan TM, Naveed K, Naqvi SS, Nawaz SJ (2022) Recent trends and advances in fundus image analysis: A review. Comput Biol Med, p 106277
8.
Zurück zum Zitat Naveed K, Abdullah F, Madni HA, Khan MA, Khan TM, Naqvi SS (2021) Towards automated eye diagnosis: An improved retinal vessel segmentation framework using ensemble block matching 3d filter. Diagnostics 11(1):114CrossRef Naveed K, Abdullah F, Madni HA, Khan MA, Khan TM, Naqvi SS (2021) Towards automated eye diagnosis: An improved retinal vessel segmentation framework using ensemble block matching 3d filter. Diagnostics 11(1):114CrossRef
9.
Zurück zum Zitat Mahapatra S, Agrawal S, Mishro PK, Pachori RB (2022) A novel framework for retinal vessel segmentation using optimal improved frangi filter and adaptive weighted spatial fcm. Comput Biol Med 147:105770CrossRef Mahapatra S, Agrawal S, Mishro PK, Pachori RB (2022) A novel framework for retinal vessel segmentation using optimal improved frangi filter and adaptive weighted spatial fcm. Comput Biol Med 147:105770CrossRef
10.
Zurück zum Zitat Imtiaz R, Khan TM, Naqvi SS, Arsalan M, Nawaz SJ (2021) Screening of glaucoma disease from retinal vessel images using semantic segmentation. Comput Electr Eng 91:107036CrossRef Imtiaz R, Khan TM, Naqvi SS, Arsalan M, Nawaz SJ (2021) Screening of glaucoma disease from retinal vessel images using semantic segmentation. Comput Electr Eng 91:107036CrossRef
11.
Zurück zum Zitat Khan TM, Robles-Kelly A, Naqvi SS (2020) A semantically flexible feature fusion network for retinal vessel segmentation. In: Neural Information Processing: 27th International Conference, ICONIP 2020, Bangkok, Thailand, November 18–22, 2020, Proceedings, Part IV 27, pp. 159–167. Springer Khan TM, Robles-Kelly A, Naqvi SS (2020) A semantically flexible feature fusion network for retinal vessel segmentation. In: Neural Information Processing: 27th International Conference, ICONIP 2020, Bangkok, Thailand, November 18–22, 2020, Proceedings, Part IV 27, pp. 159–167. Springer
12.
Zurück zum Zitat Ding Y, Wu G, Chen D, Zhang N, Gong L, Cao M, Qin Z (2020) Deepedn: A deep-learning-based image encryption and decryption network for internet of medical things. IEEE Internet Things J 8(3):1504–1518CrossRef Ding Y, Wu G, Chen D, Zhang N, Gong L, Cao M, Qin Z (2020) Deepedn: A deep-learning-based image encryption and decryption network for internet of medical things. IEEE Internet Things J 8(3):1504–1518CrossRef
13.
Zurück zum Zitat Muraoka Y, Tsujikawa A, Murakami T, Ogino K, Kumagai K, Miyamoto K, Uji A, Yoshimura N (2013) Morphologic and functional changes in retinal vessels associated with branch retinal vein occlusion. Ophthalmology 120(1):91–99CrossRef Muraoka Y, Tsujikawa A, Murakami T, Ogino K, Kumagai K, Miyamoto K, Uji A, Yoshimura N (2013) Morphologic and functional changes in retinal vessels associated with branch retinal vein occlusion. Ophthalmology 120(1):91–99CrossRef
14.
Zurück zum Zitat Thakoor KA, Li X, Tsamis E, Sajda P, Hood DC (2019) Enhancing the accuracy of glaucoma detection from oct probability maps using convolutional neural networks. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2036–2040. IEEE Thakoor KA, Li X, Tsamis E, Sajda P, Hood DC (2019) Enhancing the accuracy of glaucoma detection from oct probability maps using convolutional neural networks. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2036–2040. IEEE
15.
Zurück zum Zitat Rajalakshmi R, Subashini R, Anjana RM, Mohan V (2018) Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence. Eye 32(6):1138–1144CrossRef Rajalakshmi R, Subashini R, Anjana RM, Mohan V (2018) Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence. Eye 32(6):1138–1144CrossRef
16.
Zurück zum Zitat Yaqoob MK, Ali SF, Bilal M, Hanif MS, Al-Saggaf UM (2021) Resnet based deep features and random forest classifier for diabetic retinopathy detection. Sensors 21(11):3883CrossRef Yaqoob MK, Ali SF, Bilal M, Hanif MS, Al-Saggaf UM (2021) Resnet based deep features and random forest classifier for diabetic retinopathy detection. Sensors 21(11):3883CrossRef
17.
Zurück zum Zitat Traustason S, Jensen AS, Arvidsson HS, Munch IC, Søndergaard L, Larsen M (2011) Retinal oxygen saturation in patients with systemic hypoxemia. Invest Ophthalmol Vis Sci 52(8):5064–5067CrossRef Traustason S, Jensen AS, Arvidsson HS, Munch IC, Søndergaard L, Larsen M (2011) Retinal oxygen saturation in patients with systemic hypoxemia. Invest Ophthalmol Vis Sci 52(8):5064–5067CrossRef
18.
Zurück zum Zitat Jiang Y, Zhang H, Tan N, Chen L (2019) Automatic retinal blood vessel segmentation based on fully convolutional neural networks. Symmetry 11(9):1112CrossRef Jiang Y, Zhang H, Tan N, Chen L (2019) Automatic retinal blood vessel segmentation based on fully convolutional neural networks. Symmetry 11(9):1112CrossRef
19.
Zurück zum Zitat Khan TM, Naqvi SS, Arsalan M, Khan MA, Khan HA, Haider A (2020) Exploiting residual edge information in deep fully convolutional neural networks for retinal vessel segmentation. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE Khan TM, Naqvi SS, Arsalan M, Khan MA, Khan HA, Haider A (2020) Exploiting residual edge information in deep fully convolutional neural networks for retinal vessel segmentation. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE
20.
Zurück zum Zitat Mo J, Zhang L (2017) Multi-level deep supervised networks for retinal vessel segmentation. Int J Comput Assist Radiol Surg 12:2181–2193CrossRef Mo J, Zhang L (2017) Multi-level deep supervised networks for retinal vessel segmentation. Int J Comput Assist Radiol Surg 12:2181–2193CrossRef
21.
Zurück zum Zitat Khan TM, Robles-Kelly A (2020) A derivative-free method for quantum perceptron training in multi-layered neural networks. In: Neural Information Processing: 27th International Conference, ICONIP 2020, Bangkok, Thailand, November 18–22, 2020, Proceedings, Part V 27, pp. 241–250. Springer Khan TM, Robles-Kelly A (2020) A derivative-free method for quantum perceptron training in multi-layered neural networks. In: Neural Information Processing: 27th International Conference, ICONIP 2020, Bangkok, Thailand, November 18–22, 2020, Proceedings, Part V 27, pp. 241–250. Springer
22.
Zurück zum Zitat Lai C, Ma Z, Guo R, Zheng D (2022) Secure medical data sharing scheme based on traceable ring signature and blockchain. Peer Peer Netw Appl 15(3):1562–1576CrossRef Lai C, Ma Z, Guo R, Zheng D (2022) Secure medical data sharing scheme based on traceable ring signature and blockchain. Peer Peer Netw Appl 15(3):1562–1576CrossRef
23.
Zurück zum Zitat Goel A, Neduncheliyan S (2023) An intelligent blockchain strategy for decentralised healthcare framework. Peer Peer Netw Appl, p 1–12 Goel A, Neduncheliyan S (2023) An intelligent blockchain strategy for decentralised healthcare framework. Peer Peer Netw Appl, p 1–12
24.
Zurück zum Zitat Yang X, Li W, Fan K (2023) A revocable attribute-based encryption ehr sharing scheme with multiple authorities in blockchain. Peer Peer Netw Appl 16(1):107–125CrossRef Yang X, Li W, Fan K (2023) A revocable attribute-based encryption ehr sharing scheme with multiple authorities in blockchain. Peer Peer Netw Appl 16(1):107–125CrossRef
25.
Zurück zum Zitat Kumar Chaudhary RR, Chatterjee K (2023) A lightweight puf based multi-factor authentication technique for intelligent smart healthcare system. Peer Peer Netw Appl 16(4):1975–1992CrossRef Kumar Chaudhary RR, Chatterjee K (2023) A lightweight puf based multi-factor authentication technique for intelligent smart healthcare system. Peer Peer Netw Appl 16(4):1975–1992CrossRef
26.
Zurück zum Zitat Ale L, Fang X, Chen D, Wang Y, Zhang N (2019) Lightweight deep learning model for facial expression recognition. In: 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), pp. 707–712. IEEE Ale L, Fang X, Chen D, Wang Y, Zhang N (2019) Lightweight deep learning model for facial expression recognition. In: 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), pp. 707–712. IEEE
27.
Zurück zum Zitat Ding Y, Zhang C, Cao M, Wang Y, Chen D, Zhang N, Qin Z (2021) Tostagan: An end-to-end two-stage generative adversarial network for brain tumor segmentation. Neurocomputing 462:141–153CrossRef Ding Y, Zhang C, Cao M, Wang Y, Chen D, Zhang N, Qin Z (2021) Tostagan: An end-to-end two-stage generative adversarial network for brain tumor segmentation. Neurocomputing 462:141–153CrossRef
28.
Zurück zum Zitat Neto LC, Ramalho GL, Neto JFR, Veras RM, Medeiros FN (2017) An unsupervised coarse-to-fine algorithm for blood vessel segmentation in fundus images. Expert Syst Appl 78:182–192CrossRef Neto LC, Ramalho GL, Neto JFR, Veras RM, Medeiros FN (2017) An unsupervised coarse-to-fine algorithm for blood vessel segmentation in fundus images. Expert Syst Appl 78:182–192CrossRef
29.
Zurück zum Zitat Dash J, Bhoi N (2018) An unsupervised approach for extraction of blood vessels from fundus images. J Digit Imaging 31:857–868CrossRef Dash J, Bhoi N (2018) An unsupervised approach for extraction of blood vessels from fundus images. J Digit Imaging 31:857–868CrossRef
30.
Zurück zum Zitat Memari N, Ramli AR, Saripan MIB, Mashohor S, Moghbel M (2019) Retinal blood vessel segmentation by using matched filtering and fuzzy c-means clustering with integrated level set method for diabetic retinopathy assessment. J Med Biol Eng 39:713–731CrossRef Memari N, Ramli AR, Saripan MIB, Mashohor S, Moghbel M (2019) Retinal blood vessel segmentation by using matched filtering and fuzzy c-means clustering with integrated level set method for diabetic retinopathy assessment. J Med Biol Eng 39:713–731CrossRef
31.
Zurück zum Zitat Rehman A, Harouni M, Karimi M, Saba T, Bahaj SA, Awan MJ (2022) Microscopic retinal blood vessels detection and segmentation using support vector machine and k-nearest neighbors. Microsc Res Tech 85(5):1899–1914CrossRef Rehman A, Harouni M, Karimi M, Saba T, Bahaj SA, Awan MJ (2022) Microscopic retinal blood vessels detection and segmentation using support vector machine and k-nearest neighbors. Microsc Res Tech 85(5):1899–1914CrossRef
32.
Zurück zum Zitat Guo S, Wang K, Kang H, Zhang Y, Gao Y, Li T (2019) Bts-dsn: Deeply supervised neural network with short connections for retinal vessel segmentation. Int J Med Inform 126:105–113CrossRef Guo S, Wang K, Kang H, Zhang Y, Gao Y, Li T (2019) Bts-dsn: Deeply supervised neural network with short connections for retinal vessel segmentation. Int J Med Inform 126:105–113CrossRef
33.
Zurück zum Zitat Wang W, Zhong J, Wu H, Wen Z, Qin J (2020) Rvseg-net: An efficient feature pyramid cascade network for retinal vessel segmentation. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part V 23, pp. 796–805. Springer Wang W, Zhong J, Wu H, Wen Z, Qin J (2020) Rvseg-net: An efficient feature pyramid cascade network for retinal vessel segmentation. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part V 23, pp. 796–805. Springer
34.
Zurück zum Zitat Zhang Y, He M, Chen Z, Hu K, Li X, Gao X (2022) Bridge-net: Context-involved u-net with patch-based loss weight mapping for retinal blood vessel segmentation. Expert Syst Appl 195:116526CrossRef Zhang Y, He M, Chen Z, Hu K, Li X, Gao X (2022) Bridge-net: Context-involved u-net with patch-based loss weight mapping for retinal blood vessel segmentation. Expert Syst Appl 195:116526CrossRef
35.
Zurück zum Zitat Szegedy C, Ioffe S, Vanhoucke V, Alemi A (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 Szegedy C, Ioffe S, Vanhoucke V, Alemi A (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31
36.
Zurück zum Zitat Staal J, Abràmoff MD, Niemeijer M, Viergever MA, Van Ginneken B (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509CrossRef Staal J, Abràmoff MD, Niemeijer M, Viergever MA, Van Ginneken B (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509CrossRef
37.
Zurück zum Zitat Hoover A, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging 19(3):203–210CrossRef Hoover A, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging 19(3):203–210CrossRef
38.
Zurück zum Zitat Owen CG, Rudnicka AR, Mullen R, Barman SA, Monekosso D, Whincup PH, Ng J, Paterson C (2009) Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (caiar) program. Invest Ophthalmol Vis Sci 50(5):2004–2010CrossRef Owen CG, Rudnicka AR, Mullen R, Barman SA, Monekosso D, Whincup PH, Ng J, Paterson C (2009) Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (caiar) program. Invest Ophthalmol Vis Sci 50(5):2004–2010CrossRef
39.
Zurück zum Zitat Iqbal S, Naqvi SS, Khan HA, Saadat A, Khan TM (2022) G-net light: a lightweight modified google net for retinal vessel segmentation. Photonics 9:923. MDPI Iqbal S, Naqvi SS, Khan HA, Saadat A, Khan TM (2022) G-net light: a lightweight modified google net for retinal vessel segmentation. Photonics 9:923. MDPI
40.
Zurück zum Zitat Yan Z, Yang X, Cheng K-T (2018) Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Trans Biomed Eng 65(9):1912–1923CrossRef Yan Z, Yang X, Cheng K-T (2018) Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Trans Biomed Eng 65(9):1912–1923CrossRef
41.
Zurück zum Zitat Adarsh R, Amarnageswarao G, Pandeeswari R, Deivalakshmi S (2020) Dense residual convolutional auto encoder for retinal blood vessels segmentation. In: 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), pp. 280–284. IEEE Adarsh R, Amarnageswarao G, Pandeeswari R, Deivalakshmi S (2020) Dense residual convolutional auto encoder for retinal blood vessels segmentation. In: 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), pp. 280–284. IEEE
42.
Zurück zum Zitat Wang C, Zhao Z, Yu Y (2021) Fine retinal vessel segmentation by combining nest u-net and patch-learning. Soft Comput 25(5519–5532):43 Wang C, Zhao Z, Yu Y (2021) Fine retinal vessel segmentation by combining nest u-net and patch-learning. Soft Comput 25(5519–5532):43
43.
Zurück zum Zitat Lv Y, Ma H, Li J, Liu S (2020) Attention guided u-net with atrous convolution for accurate retinal vessels segmentation. IEEE Access 8:32826–32839CrossRef Lv Y, Ma H, Li J, Liu S (2020) Attention guided u-net with atrous convolution for accurate retinal vessels segmentation. IEEE Access 8:32826–32839CrossRef
44.
Zurück zum Zitat Yang L, Wang H, Zeng Q, Liu Y, Bian G (2021) A hybrid deep segmentation network for fundus vessels via deep-learning framework. Neurocomputing 448:168–178CrossRef Yang L, Wang H, Zeng Q, Liu Y, Bian G (2021) A hybrid deep segmentation network for fundus vessels via deep-learning framework. Neurocomputing 448:168–178CrossRef
46.
Zurück zum Zitat Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK (2018) Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. arXiv preprint arXiv:1802.06955 Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK (2018) Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. arXiv preprint arXiv:​1802.​06955
47.
Zurück zum Zitat Ibtehaz N, Rahman MS (2020) Multiresunet: Rethinking the u-net architecture for multimodal biomedical image segmentation. Neural Netw 121:74–87CrossRef Ibtehaz N, Rahman MS (2020) Multiresunet: Rethinking the u-net architecture for multimodal biomedical image segmentation. Neural Netw 121:74–87CrossRef
Metadaten
Titel
BranchFusionNet: An energy-efficient lightweight framework for superior retinal vessel segmentation
verfasst von
Jing Qin
Zhiguang Qin
Peng Xiao
Publikationsdatum
20.06.2024
Verlag
Springer US
Erschienen in
Peer-to-Peer Networking and Applications / Ausgabe 5/2024
Print ISSN: 1936-6442
Elektronische ISSN: 1936-6450
DOI
https://doi.org/10.1007/s12083-024-01738-3