Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.10.2013 | Special Issue Paper | Ausgabe 7/2013

Machine Vision and Applications 7/2013

Breast cancer diagnosis from biopsy images with highly reliable random subspace classifier ensembles

Zeitschrift:
Machine Vision and Applications > Ausgabe 7/2013
Autoren:
Yungang Zhang, Bailing Zhang, Frans Coenen, Wenjin Lu
Wichtige Hinweise
The project is funded by China Jiangsu Provincial Natural Science Foundation Intelligent Bioimages Analysis, Retrieval and Management (BK2009146).

Abstract

Accurate and reliable classification of microscopic biopsy images is an important issue in computer assisted breast cancer diagnosis. In this paper, a new cascade Random Subspace ensembles scheme with reject options is proposed for microscopic biopsy image classification. The classification system is built as a serial fusion of two different Random Subspace classifier ensembles with rejection options to enhance the classification reliability. The first ensemble consists of a set of Support Vector Machine classifiers that converts the original \(K\)-class classification problem into a number of \(K\) 2-class problems. The second ensemble consists of a Multi-Layer Perceptron ensemble, that focuses on the rejected samples from the first ensemble. For both of the ensembles, the reject option is implemented by relating the consensus degree from majority voting to a confidence measure, and abstaining to classify ambiguous samples if the consensus degree is lower than some threshold. We also investigated the effectiveness of a feature description approach by combining Local Binary Pattern (LBP) texture analysis, statistics derived using the Gray Level Co-occurrence Matrix (GLCM) and the Curvelet Transform. While the LBP analysis efficiently describes local texture properties and the GLCM reflects global texture statistics, the Curvelet Transform is particularly appropriate for the representation of piece-wise smooth images with rich edge information. The combined feature description thus provides a comprehensive biopsy image characterization by taking advantages of their complementary strengths. Using a benchmark microscopic biopsy image dataset, obtained from the Israel Institute of Technology, a high classification accuracy of \(99.25 \%\) was obtained (with a rejection rate of \(1.94 \%\)) using the proposed system.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 7/2013

Machine Vision and Applications 7/2013 Zur Ausgabe

Premium Partner

    Bildnachweise