Skip to main content

2021 | OriginalPaper | Buchkapitel

Broadband Aerodynamic Noise Simulation Using Synthetic Turbulence Methods

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Turbulence generated broadband noise is an important source of noise that can be found in many applications. The characteristics of noise are defined by a combination of turbulence statistics, flow and geometry, imposing challenges in developing efficient and robust prediction methods. Direct simulations of flow governing equations are currently too costly for design optimisation. An efficient strategy is to solve governing equations such as the full or linearized Euler equations with a synthetic turbulence model, which reproduces main turbulence statistics, therefore capturing the physics of noise generation and sound propagation. In this paper, synthetic turbulence methods for aeroacoustics, especially those suitable for the broadband noise simulations of leading edge noise problems, are introduced. Examples are provided, together with progresses made in tackling the challenges of computational aeroacoustics for transonic flows and far-field noise computation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat N. Jarrin, S. Benhamadouche, D. Laurence, R. Prosser, A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. Int. J. Heat Fluid Flow 27, 585–593 (2006)CrossRef N. Jarrin, S. Benhamadouche, D. Laurence, R. Prosser, A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. Int. J. Heat Fluid Flow 27, 585–593 (2006)CrossRef
3.
Zurück zum Zitat R.K. Amiet, Acoustic radiation from an airfoil in a turbulent stream. J. Sound Vib. 41(4), 407–420 (1975)MATHCrossRef R.K. Amiet, Acoustic radiation from an airfoil in a turbulent stream. J. Sound Vib. 41(4), 407–420 (1975)MATHCrossRef
4.
Zurück zum Zitat U. W. Ganz, P. D. Joppa, T. J. Patten and D. F. Scharpf, “Boeing 18-inch fan rig broadband noise test,” NASA Tech. Rep. CR-1998-208704, 1998 U. W. Ganz, P. D. Joppa, T. J. Patten and D. F. Scharpf, “Boeing 18-inch fan rig broadband noise test,” NASA Tech. Rep. CR-1998-208704, 1998
5.
Zurück zum Zitat G. G. Podboy, M. J. Krupar, S. M. Helland and C. E. Hughes, “Steady and unsteady flow field measyrements within a NASA 22-inch fan model,” AIAA Paper 2002–1033, 2002 G. G. Podboy, M. J. Krupar, S. M. Helland and C. E. Hughes, “Steady and unsteady flow field measyrements within a NASA 22-inch fan model,” AIAA Paper 2002–1033, 2002
6.
Zurück zum Zitat R. Mani and K. Bekofske, “Experimental and theoretical studies of subsonic fan noise,” NASA Tech. Rep. CR-2660, 1976 R. Mani and K. Bekofske, “Experimental and theoretical studies of subsonic fan noise,” NASA Tech. Rep. CR-2660, 1976
7.
Zurück zum Zitat R. A. Kantola and R. E. Warren, “Reduction of rotor-turbulence interaction noise in static fan noise testing,” AIAA Paper 79-0656, 1979 R. A. Kantola and R. E. Warren, “Reduction of rotor-turbulence interaction noise in static fan noise testing,” AIAA Paper 79-0656, 1979
8.
Zurück zum Zitat R.K. Amiet, High frequency thin-airfoil theory for subsonic flow. AIAA J. 14(8), 1076–1082 (1976)MATHCrossRef R.K. Amiet, High frequency thin-airfoil theory for subsonic flow. AIAA J. 14(8), 1076–1082 (1976)MATHCrossRef
9.
Zurück zum Zitat R. W. Paterson and R. K. Amiet, “Acoustic radiation and surface pressure characteristics of an airfoil due to incident turbulence,” NASA Tech. Rep. CR-2733, 1976 R. W. Paterson and R. K. Amiet, “Acoustic radiation and surface pressure characteristics of an airfoil due to incident turbulence,” NASA Tech. Rep. CR-2733, 1976
10.
Zurück zum Zitat W.J. Devenport, J.K. Staubs, S.A. Glegg, Sound radiation from real airfoils in turbulence. J. Sound Vib. 17, 3470–3483 (2010)CrossRef W.J. Devenport, J.K. Staubs, S.A. Glegg, Sound radiation from real airfoils in turbulence. J. Sound Vib. 17, 3470–3483 (2010)CrossRef
11.
Zurück zum Zitat S. Oerlemans and P. Migliore, “Aeroacoustic wind tunnel tests of wind turbine airfoils,” AIAA Paper 2004-3042, 2004 S. Oerlemans and P. Migliore, “Aeroacoustic wind tunnel tests of wind turbine airfoils,” AIAA Paper 2004-3042, 2004
12.
Zurück zum Zitat S. Moreau, M. Roger and V. Jurdic, “Effect of angle of attack and airfoil shape on turbulence-interaction noise,” AIAA Paper 2005-2973, 2005 S. Moreau, M. Roger and V. Jurdic, “Effect of angle of attack and airfoil shape on turbulence-interaction noise,” AIAA Paper 2005-2973, 2005
13.
Zurück zum Zitat P. Chaitanya, J. Gill, S. Narayanan, P. Joseph, C. Vanderwel, X. Zhang and G. B., “Aerofoil geometry effects on turbulence interaction noise,” AIAA 2015-2830 P. Chaitanya, J. Gill, S. Narayanan, P. Joseph, C. Vanderwel, X. Zhang and G. B., “Aerofoil geometry effects on turbulence interaction noise,” AIAA 2015-2830
14.
Zurück zum Zitat V. Clair, C. Polacsek, T. Le Garrec, G. Reboul, M. Gruber, P. Joseph, Experimental and numerical investigation of turbulence-airfoil noise reduction using wavy edge. AIAA J. 51(11), 2695–2713 (2013)CrossRef V. Clair, C. Polacsek, T. Le Garrec, G. Reboul, M. Gruber, P. Joseph, Experimental and numerical investigation of turbulence-airfoil noise reduction using wavy edge. AIAA J. 51(11), 2695–2713 (2013)CrossRef
15.
Zurück zum Zitat J. Gill, X. Zhang, P. Joseph, Single velocity-component modeling of leading edge turbulence interaction noise. J. Acoust. Soc. Am. 137(6), 3209–3220 (2015)CrossRef J. Gill, X. Zhang, P. Joseph, Single velocity-component modeling of leading edge turbulence interaction noise. J. Acoust. Soc. Am. 137(6), 3209–3220 (2015)CrossRef
16.
Zurück zum Zitat H.M. Atassi, M. Dusey, C.M. Davis, Acoustic radiation from a thin airfoil in non-uniform subsonic flows. AIAA J. 31(1), 12–19 (1993)MATHCrossRef H.M. Atassi, M. Dusey, C.M. Davis, Acoustic radiation from a thin airfoil in non-uniform subsonic flows. AIAA J. 31(1), 12–19 (1993)MATHCrossRef
17.
Zurück zum Zitat J. Scott and H. M. Atassi, “Numerical solutions of the linearised Euler equations for unsteady vortical flows around lifting airfoils,” AIAA Paper 90-0694, 1990 J. Scott and H. M. Atassi, “Numerical solutions of the linearised Euler equations for unsteady vortical flows around lifting airfoils,” AIAA Paper 90-0694, 1990
18.
Zurück zum Zitat D.P. Lockard, P.J. Morris, Radiated noise from airfoils in realistic mean flows. AIAA J. 36(6), 907–914 (1998)CrossRef D.P. Lockard, P.J. Morris, Radiated noise from airfoils in realistic mean flows. AIAA J. 36(6), 907–914 (1998)CrossRef
19.
Zurück zum Zitat J. Gill, X. Zhang, P. Joseph, Symmetric airfoil geometry effects on leading edge noise. J. Acoust. Soc. Am. 134(4), 2669–2680 (2013)CrossRef J. Gill, X. Zhang, P. Joseph, Symmetric airfoil geometry effects on leading edge noise. J. Acoust. Soc. Am. 134(4), 2669–2680 (2013)CrossRef
20.
Zurück zum Zitat F. Gea-Aguilera, X. Zhang, X. X. Chen, J. Gill and T. Node-Langlois, “Synthetic turbulence methods for leading edge noise predictions,” AIAA Paper 2015-2670, 2015 F. Gea-Aguilera, X. Zhang, X. X. Chen, J. Gill and T. Node-Langlois, “Synthetic turbulence methods for leading edge noise predictions,” AIAA Paper 2015-2670, 2015
21.
Zurück zum Zitat S.Y. Zhong, X. Zhang, B. Peng, X. Huang, An analytical correction to Amiet’s solution of airfoil leading-edge noise in non-uniform mean flows. J. Fluid Mech. 882, A29 (2020)MathSciNetMATHCrossRef S.Y. Zhong, X. Zhang, B. Peng, X. Huang, An analytical correction to Amiet’s solution of airfoil leading-edge noise in non-uniform mean flows. J. Fluid Mech. 882, A29 (2020)MathSciNetMATHCrossRef
22.
Zurück zum Zitat S.Y. Zhong, H.B. Jiang, W. Ying, X. Zhang, X. Huang, An efficient computation of cascade-gust interaction noise based on a hybrid analytical and boundary element method. J. Sound Vib. 461, 114911 (2019)CrossRef S.Y. Zhong, H.B. Jiang, W. Ying, X. Zhang, X. Huang, An efficient computation of cascade-gust interaction noise based on a hybrid analytical and boundary element method. J. Sound Vib. 461, 114911 (2019)CrossRef
23.
Zurück zum Zitat X. Zhang, Aircraft noise and its nearfield propagation computations. Acta Mech. Sinica 28(4), 960–977 (2012)MATHCrossRef X. Zhang, Aircraft noise and its nearfield propagation computations. Acta Mech. Sinica 28(4), 960–977 (2012)MATHCrossRef
24.
25.
Zurück zum Zitat B.-T. Chu, L.S.G. Kovasznay, Non-linear interactions in a viscous heat-conducting compressible gas. J. Fluid Mech. 3, 494–514 (1958)MathSciNetCrossRef B.-T. Chu, L.S.G. Kovasznay, Non-linear interactions in a viscous heat-conducting compressible gas. J. Fluid Mech. 3, 494–514 (1958)MathSciNetCrossRef
26.
Zurück zum Zitat C.C. Lin, On Taylor’s hypothesis and the acceleration terms in the Navier-Stokes equations. Quart. Appl. Math. 10(4), 295–306 (1953)MathSciNetMATHCrossRef C.C. Lin, On Taylor’s hypothesis and the acceleration terms in the Navier-Stokes equations. Quart. Appl. Math. 10(4), 295–306 (1953)MathSciNetMATHCrossRef
27.
Zurück zum Zitat G.I. Taylor, The spectrum of turbulence. Proc. R. Soc. A. 164(919), 476–490 (1938)MATH G.I. Taylor, The spectrum of turbulence. Proc. R. Soc. A. 164(919), 476–490 (1938)MATH
28.
Zurück zum Zitat R.H. Kraichnan, Diffusion by a random velocity field. Phys. Fluids 13(1), 22–31 (1970)MATHCrossRef R.H. Kraichnan, Diffusion by a random velocity field. Phys. Fluids 13(1), 22–31 (1970)MATHCrossRef
29.
Zurück zum Zitat M. Karweit, P. Blanc-Benon, D. Juve, G. Comte-Bellot, Simulation of the propagation of an acoustic wave through a turbulent velocity field: a study of phase variance. J. Acoust. Soc. Am. 89(1), 52–62 (1991)CrossRef M. Karweit, P. Blanc-Benon, D. Juve, G. Comte-Bellot, Simulation of the propagation of an acoustic wave through a turbulent velocity field: a study of phase variance. J. Acoust. Soc. Am. 89(1), 52–62 (1991)CrossRef
30.
Zurück zum Zitat A. Smirnov, S. Shi, I. Celik, Random flow generation technique for large eddy simulations and particle-dynamics modeling. J. Fluid Engineering 123(2), 359–371 (2001)CrossRef A. Smirnov, S. Shi, I. Celik, Random flow generation technique for large eddy simulations and particle-dynamics modeling. J. Fluid Engineering 123(2), 359–371 (2001)CrossRef
31.
Zurück zum Zitat S.H. Huang, Q.S. Li, J.R. Wu, A general inflow turbulence generator for large eddy simulation. J. Wind Eng. Indust. Aero. 98(10–11), 600–617 (2010)CrossRef S.H. Huang, Q.S. Li, J.R. Wu, A general inflow turbulence generator for large eddy simulation. J. Wind Eng. Indust. Aero. 98(10–11), 600–617 (2010)CrossRef
32.
Zurück zum Zitat P. Batten, U. Goldberg, S. Chakravarthy, Interfacing statistical turbulence closures with large-eddy simulation. AIAA J. 42(3), 485–492 (2004)CrossRef P. Batten, U. Goldberg, S. Chakravarthy, Interfacing statistical turbulence closures with large-eddy simulation. AIAA J. 42(3), 485–492 (2004)CrossRef
33.
Zurück zum Zitat W. Bachara, C. Bailly, P. Lafon, S.M. Candel, Stochastic approach to noise modeling for free turbulent flows. AIAA J. 32(3), 455–463 (1994)MATHCrossRef W. Bachara, C. Bailly, P. Lafon, S.M. Candel, Stochastic approach to noise modeling for free turbulent flows. AIAA J. 32(3), 455–463 (1994)MATHCrossRef
34.
Zurück zum Zitat C. Bailly, P. Lafon and S. Candel, “Computation of noise generation and propagation for free and confined turbulent flows,” AIAA Paper 96-1732, 1996 C. Bailly, P. Lafon and S. Candel, “Computation of noise generation and propagation for free and confined turbulent flows,” AIAA Paper 96-1732, 1996
35.
Zurück zum Zitat S.Y. Zhong, X. Zhang, J. Gill, R. Fattah, Y.H. Sun, A numerical investigation of the airfoil-gust interaction noise in transonic flows: acoustic processes. J. Sound Vib. 425, 239–256 (2018)CrossRef S.Y. Zhong, X. Zhang, J. Gill, R. Fattah, Y.H. Sun, A numerical investigation of the airfoil-gust interaction noise in transonic flows: acoustic processes. J. Sound Vib. 425, 239–256 (2018)CrossRef
36.
Zurück zum Zitat F. Gea-Aguilera, J. Gill, X. Zhang, Synthetic turbulence methods for computational aeroacoustic simulations of leading edge noise. Computer Fluids 157(3), 240–252 (2017)MathSciNetMATHCrossRef F. Gea-Aguilera, J. Gill, X. Zhang, Synthetic turbulence methods for computational aeroacoustic simulations of leading edge noise. Computer Fluids 157(3), 240–252 (2017)MathSciNetMATHCrossRef
37.
Zurück zum Zitat N. Jarrin, R. Prosser, J.C. Uribe, S. Benhamadouche, D. Laurence, Reconstruction of turbulent fluctuations for hybrid RANS/LES simulations using a synthetic eddy method. Int. H. Heat Fluid Flow 30(3), 435–442 (2009)CrossRef N. Jarrin, R. Prosser, J.C. Uribe, S. Benhamadouche, D. Laurence, Reconstruction of turbulent fluctuations for hybrid RANS/LES simulations using a synthetic eddy method. Int. H. Heat Fluid Flow 30(3), 435–442 (2009)CrossRef
38.
Zurück zum Zitat A. Sescu, R. Hixon, Toward low-noise synthetic turbulent inflow conditions for aeroacoustic calculations. Int. J. Num. Method Fluids 73(12), 1001–1010 (2013)MathSciNetMATH A. Sescu, R. Hixon, Toward low-noise synthetic turbulent inflow conditions for aeroacoustic calculations. Int. J. Num. Method Fluids 73(12), 1001–1010 (2013)MathSciNetMATH
39.
Zurück zum Zitat J.W. Kim, S. Haeri, An advanced synthetic eddy method for the computation of airfoil-turbulence interaction noise. J. Comput. Phys. 287, 1–17 (2015)MathSciNetMATHCrossRef J.W. Kim, S. Haeri, An advanced synthetic eddy method for the computation of airfoil-turbulence interaction noise. J. Comput. Phys. 287, 1–17 (2015)MathSciNetMATHCrossRef
40.
Zurück zum Zitat A. Sescu, F. Sagues, J.M. Sancho, Stochastic generation of homogeneous isotropic turbulence with well defined spectra. Phys. Rev. E 48(3), 2279–2287 (1993)CrossRef A. Sescu, F. Sagues, J.M. Sancho, Stochastic generation of homogeneous isotropic turbulence with well defined spectra. Phys. Rev. E 48(3), 2279–2287 (1993)CrossRef
41.
Zurück zum Zitat M. Klein, A. Sadiki, J. Janicka, A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186(2), 652–665 (2003)MATHCrossRef M. Klein, A. Sadiki, J. Janicka, A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186(2), 652–665 (2003)MATHCrossRef
42.
Zurück zum Zitat L. di Mare, M. Klein, W.P. Jones, J. Janicka, Synthetic turbulence inflow conditions for large eddy simulation. Phys. Fluids 18(2), 025107 (2006)CrossRef L. di Mare, M. Klein, W.P. Jones, J. Janicka, Synthetic turbulence inflow conditions for large eddy simulation. Phys. Fluids 18(2), 025107 (2006)CrossRef
43.
Zurück zum Zitat R. Ewert, Broadband slat noise prediction based on CAA and stochastic sound sources from a fast random particle-mesh (RPM) method. Comput. Fluids 37(4), 369–387 (2008)MathSciNetMATHCrossRef R. Ewert, Broadband slat noise prediction based on CAA and stochastic sound sources from a fast random particle-mesh (RPM) method. Comput. Fluids 37(4), 369–387 (2008)MathSciNetMATHCrossRef
44.
Zurück zum Zitat R. Ewert, J. Dierke, J. Siebert, A. Neifeld, C. Appel, M. Siefert, O. Kornow, CAA broadband noise prediction for aeroacoustic design. J. Sound Vib. 330(17), 4139–4160 (2011)CrossRef R. Ewert, J. Dierke, J. Siebert, A. Neifeld, C. Appel, M. Siefert, O. Kornow, CAA broadband noise prediction for aeroacoustic design. J. Sound Vib. 330(17), 4139–4160 (2011)CrossRef
45.
Zurück zum Zitat A. Wohlbrandt, N. Hu, S. Guerin, R. Ewert, Analytical reconstruction of isotropic turbulence spectra based on the Gaussian transform. Comput. Fluids 132, 46–50 (2016)MathSciNetMATHCrossRef A. Wohlbrandt, N. Hu, S. Guerin, R. Ewert, Analytical reconstruction of isotropic turbulence spectra based on the Gaussian transform. Comput. Fluids 132, 46–50 (2016)MathSciNetMATHCrossRef
46.
Zurück zum Zitat M. Siefert and R. Ewert, “Sweeping sound generation in het realised with a random particle mesh method,” AIAA Paper 2009-3369, 2009 M. Siefert and R. Ewert, “Sweeping sound generation in het realised with a random particle mesh method,” AIAA Paper 2009-3369, 2009
47.
Zurück zum Zitat M. Dieste, G. Gabard, Random particle methods applied to broadband fan interaction noise. J. Comput. Phys. 231(24), 8133–8151 (2012)MathSciNetMATHCrossRef M. Dieste, G. Gabard, Random particle methods applied to broadband fan interaction noise. J. Comput. Phys. 231(24), 8133–8151 (2012)MathSciNetMATHCrossRef
48.
Zurück zum Zitat S. B. Pope, Turbulent flows, Cambridge University Press, 2000 S. B. Pope, Turbulent flows, Cambridge University Press, 2000
49.
Zurück zum Zitat Z. Shen, X. Zhang, Direct anisotropic filter method of generating synthetic turbulence applied to turbulence-airfoil interaction noise prediction. J. Sound Vib. 458, 544–564 (2019)CrossRef Z. Shen, X. Zhang, Direct anisotropic filter method of generating synthetic turbulence applied to turbulence-airfoil interaction noise prediction. J. Sound Vib. 458, 544–564 (2019)CrossRef
50.
Zurück zum Zitat E.J. Kerschen, P.R. Gliebe, Noise caused by the interaction of a rotor with anisotropic turbulence. AIAA J. 19(6), 717–723 (1981)CrossRef E.J. Kerschen, P.R. Gliebe, Noise caused by the interaction of a rotor with anisotropic turbulence. AIAA J. 19(6), 717–723 (1981)CrossRef
51.
Zurück zum Zitat H. W. Liepmann, J. Laufer and K. Liepmann, “On the spectrum of isotropic turbulence,” NACA Tech. Rep. TN-2473, 1951 H. W. Liepmann, J. Laufer and K. Liepmann, “On the spectrum of isotropic turbulence,” NACA Tech. Rep. TN-2473, 1951
52.
Zurück zum Zitat H. M. Atassi and M. M. Logue, “Fan broadband noise in anisotropic turbulence,” AIAA 2009-3148, 2009 H. M. Atassi and M. M. Logue, “Fan broadband noise in anisotropic turbulence,” AIAA 2009-3148, 2009
53.
Zurück zum Zitat H. Posson, S. Moreau, M. Roger, Broadband noise prediction of fan outlet guide vane using a cascade response function. J. Sound Vib. 330(25), 6153–6183 (2011)CrossRef H. Posson, S. Moreau, M. Roger, Broadband noise prediction of fan outlet guide vane using a cascade response function. J. Sound Vib. 330(25), 6153–6183 (2011)CrossRef
54.
Zurück zum Zitat F. Gea-Aguilera, J. Gill, D. Angland and X. Zhang, “Wavy leading edge airfoils interacting with anisotropic turbulence,” AIAA Paper 2017-3370, 2017 F. Gea-Aguilera, J. Gill, D. Angland and X. Zhang, “Wavy leading edge airfoils interacting with anisotropic turbulence,” AIAA Paper 2017-3370, 2017
55.
Zurück zum Zitat S.M. Grace, Fan broadband interaction noise modeling using a low-order method. J. Sound Vib. 346, 402–423 (2015)CrossRef S.M. Grace, Fan broadband interaction noise modeling using a low-order method. J. Sound Vib. 346, 402–423 (2015)CrossRef
56.
Zurück zum Zitat F. Gea-Aguilera, J. Gill, X. Zhang, X. X. Chen and T. Node-Langlois, “Leading edge noise predictions using anisotropic synthetic turbulence,” AIAA Paper 2016-2840, 2016 F. Gea-Aguilera, J. Gill, X. Zhang, X. X. Chen and T. Node-Langlois, “Leading edge noise predictions using anisotropic synthetic turbulence,” AIAA Paper 2016-2840, 2016
57.
Zurück zum Zitat S.Y. Zhong, X. Zhang, On the effect of streamwise disturbance on the airfoil-turbulence interaction noise. J. Acoust. Soc. Am. 145(4), 2530–2539 (2019)CrossRef S.Y. Zhong, X. Zhang, On the effect of streamwise disturbance on the airfoil-turbulence interaction noise. J. Acoust. Soc. Am. 145(4), 2530–2539 (2019)CrossRef
58.
Zurück zum Zitat M. D. Dahl, “Third computational aeroacoustics (CAA) workshop on benchmark problems,” NASA Tech. Rep. CP-2000-209790, 2000 M. D. Dahl, “Third computational aeroacoustics (CAA) workshop on benchmark problems,” NASA Tech. Rep. CP-2000-209790, 2000
59.
Zurück zum Zitat P. Chaitanya, J. Coupland and P. Joseph, “Airfoil geometry effects on turbulence interaction noise in cascades,” AIAA Paper 2016-2738, 2016 P. Chaitanya, J. Coupland and P. Joseph, “Airfoil geometry effects on turbulence interaction noise in cascades,” AIAA Paper 2016-2738, 2016
60.
Zurück zum Zitat M. Nallasamy, E. Envia, Computation of rotor wake turbulence noise. J. Sound Vib. 282(3–5), 649–678 (2005)CrossRef M. Nallasamy, E. Envia, Computation of rotor wake turbulence noise. J. Sound Vib. 282(3–5), 649–678 (2005)CrossRef
61.
Zurück zum Zitat H. Ju, R. Mani, M. Vysohlid, A. Sharma, Investigation of fan-wake/outlet-guide-vane interaction broadband noise. AIAA J. 53(12), 3534–3550 (2015)CrossRef H. Ju, R. Mani, M. Vysohlid, A. Sharma, Investigation of fan-wake/outlet-guide-vane interaction broadband noise. AIAA J. 53(12), 3534–3550 (2015)CrossRef
62.
Zurück zum Zitat A.M. Wohlbrandt, C. Kissner, S. Guerin, Impact of cyclostationarity on fan broadband noise prediction. J. Sound Vib. 420, 142–164 (2018)CrossRef A.M. Wohlbrandt, C. Kissner, S. Guerin, Impact of cyclostationarity on fan broadband noise prediction. J. Sound Vib. 420, 142–164 (2018)CrossRef
63.
Zurück zum Zitat V. Jurdic, P. Joseph, J. Antoni, Investigation of rotor wake turbulence through cyclostationary spactral analysis. AIAA J. 47, 2022–2030 (2009)CrossRef V. Jurdic, P. Joseph, J. Antoni, Investigation of rotor wake turbulence through cyclostationary spactral analysis. AIAA J. 47, 2022–2030 (2009)CrossRef
64.
Zurück zum Zitat F. Gea-Aguilera, J. Gill, X. Zhang, On the effects of fan wake modelling and vane design on cascade noise. J. Sound Vib. 459, 114859 (2019)CrossRef F. Gea-Aguilera, J. Gill, X. Zhang, On the effects of fan wake modelling and vane design on cascade noise. J. Sound Vib. 459, 114859 (2019)CrossRef
65.
Zurück zum Zitat F. Gea-Aguilera, J. Gill, X. Zhang and T. Node-Langlois, “Turbulence-cascade interaction noise using an advanced digital filter method,” 23 Int. Congress Sound Vib., 2016 F. Gea-Aguilera, J. Gill, X. Zhang and T. Node-Langlois, “Turbulence-cascade interaction noise using an advanced digital filter method,” 23 Int. Congress Sound Vib., 2016
66.
Zurück zum Zitat R. Fattah and X. Zhang, “A hybrid high-order sliding mesh interface for finite difference schemes,” 24th Int. Congress Sound Vib., 2017 R. Fattah and X. Zhang, “A hybrid high-order sliding mesh interface for finite difference schemes,” 24th Int. Congress Sound Vib., 2017
67.
Zurück zum Zitat S. Kaji, T. Okazaki, Propagation of sound waves through a blade row. I analysis based on the semi-actor disk theory. J. Sound Vib. 11, 339–353 (1970)CrossRef S. Kaji, T. Okazaki, Propagation of sound waves through a blade row. I analysis based on the semi-actor disk theory. J. Sound Vib. 11, 339–353 (1970)CrossRef
68.
Zurück zum Zitat J. Gill, “Roadband noise generation of a contra-rotating open rotor blade,” PhD thesis, University of Southampton, 2015 J. Gill, “Roadband noise generation of a contra-rotating open rotor blade,” PhD thesis, University of Southampton, 2015
69.
Zurück zum Zitat A. M. Hall, O. V. Atassi, J. Gilson and R. Reba, “Effects of leading edge thickness on high-speed airfoil-turbulence interaction noise,” AIAA Paper 2011-2861, 2011 A. M. Hall, O. V. Atassi, J. Gilson and R. Reba, “Effects of leading edge thickness on high-speed airfoil-turbulence interaction noise,” AIAA Paper 2011-2861, 2011
70.
Zurück zum Zitat F. K. Moore, “Unsteady oblique interaction of a shock wave with a plane disturbance,” NASA Report 1165, 1953 F. K. Moore, “Unsteady oblique interaction of a shock wave with a plane disturbance,” NASA Report 1165, 1953
71.
Zurück zum Zitat I. Evers, Gust-shock interaction in transonic small-disturnance flow. AIAA J. 39(1), 29–36 (2001)CrossRef I. Evers, Gust-shock interaction in transonic small-disturnance flow. AIAA J. 39(1), 29–36 (2001)CrossRef
72.
Zurück zum Zitat I. Evers, N. Peale, Noise generation by high-frequency gust interacting with an airfoil in transonic flow. J. Fluid Mech. 411, 91–130 (2000)MATHCrossRef I. Evers, N. Peale, Noise generation by high-frequency gust interacting with an airfoil in transonic flow. J. Fluid Mech. 411, 91–130 (2000)MATHCrossRef
73.
Zurück zum Zitat S. Y. Zhong, “An analytical and computational aeroacoustics investigation of gust-airfoil interaction noise,” PhD thesis, The Hong Kong Universtiy of Science and Technology, 2018 S. Y. Zhong, “An analytical and computational aeroacoustics investigation of gust-airfoil interaction noise,” PhD thesis, The Hong Kong Universtiy of Science and Technology, 2018
74.
Zurück zum Zitat A.W. Cook, Artificial fluid properties for large-eddy simulation of compressible turbulent mixing. Phys. Fluids 19(5), 1–9 (2007)CrossRef A.W. Cook, Artificial fluid properties for large-eddy simulation of compressible turbulent mixing. Phys. Fluids 19(5), 1–9 (2007)CrossRef
75.
Zurück zum Zitat X. Zhang, X.X. Chen, C.L. Morfey, P.A. Nelson, Computation of spinning modal radiation from an unflanged duct. AIAA J. 42(9), 1795–1801 (2004)CrossRef X. Zhang, X.X. Chen, C.L. Morfey, P.A. Nelson, Computation of spinning modal radiation from an unflanged duct. AIAA J. 42(9), 1795–1801 (2004)CrossRef
76.
Zurück zum Zitat Z.K. Ma, X. Zhang, Numerical investigation of broadband slat noise attenuation with acoustic liner treatment. AIAA J. 47(12), 2812–2820 (2009)CrossRef Z.K. Ma, X. Zhang, Numerical investigation of broadband slat noise attenuation with acoustic liner treatment. AIAA J. 47(12), 2812–2820 (2009)CrossRef
77.
Zurück zum Zitat S.Y. Zhong, X. Zhang, J. Gill, R. Fattah, Y.H. Sun, Geometry effect on the airfoil-gust interaction noise in transonic flows. Aero. Sci. Tech. 92, 181–191 (2019)CrossRef S.Y. Zhong, X. Zhang, J. Gill, R. Fattah, Y.H. Sun, Geometry effect on the airfoil-gust interaction noise in transonic flows. Aero. Sci. Tech. 92, 181–191 (2019)CrossRef
78.
Zurück zum Zitat P. Chaitanya, S. Narayanan, P. Joseph and J. W. Kim, “Leading edge serration geometries for significantly enhanced leading edge noise reduction,” AIAA Paper 2016-2736, 2016 P. Chaitanya, S. Narayanan, P. Joseph and J. W. Kim, “Leading edge serration geometries for significantly enhanced leading edge noise reduction,” AIAA Paper 2016-2736, 2016
79.
Zurück zum Zitat P. Chaitanya, P. Joseph, S. Narayanan, C. Vanderwel, J. Turner, J.W. Kim, B. Ganapathisubramani, Performance and mechanism of sinusoidal leading edge serrations for the reduction of turbulence-aerofoil interaction noise. J. Fluid Mech. 818, 435–464 (2017)MathSciNetMATHCrossRef P. Chaitanya, P. Joseph, S. Narayanan, C. Vanderwel, J. Turner, J.W. Kim, B. Ganapathisubramani, Performance and mechanism of sinusoidal leading edge serrations for the reduction of turbulence-aerofoil interaction noise. J. Fluid Mech. 818, 435–464 (2017)MathSciNetMATHCrossRef
80.
Zurück zum Zitat J. Mathews and N. Peake, “Noise generation by turbulence interacting with an aerofoil with a serrated leading edge,” AIAA Paper 2015-2204, 2015 J. Mathews and N. Peake, “Noise generation by turbulence interacting with an aerofoil with a serrated leading edge,” AIAA Paper 2015-2204, 2015
81.
Zurück zum Zitat L.J. Ayton, J.W. Kim, An analytic solution for the noise generated by gust-aerofoil interaction for plates with serrated leading edges. J. Fluid Mech. 853, 515–536 (2018)MathSciNetMATHCrossRef L.J. Ayton, J.W. Kim, An analytic solution for the noise generated by gust-aerofoil interaction for plates with serrated leading edges. J. Fluid Mech. 853, 515–536 (2018)MathSciNetMATHCrossRef
82.
Zurück zum Zitat D.S. Miklosovic, M.M. Murray, L.E. Howle, F.E. Fish, Leading edge tubercles delay stall on humpback whale (Megaptera Novaeangliae) flippers. Phys. Fluid 16(5), 39–32 (2004)MATHCrossRef D.S. Miklosovic, M.M. Murray, L.E. Howle, F.E. Fish, Leading edge tubercles delay stall on humpback whale (Megaptera Novaeangliae) flippers. Phys. Fluid 16(5), 39–32 (2004)MATHCrossRef
83.
Zurück zum Zitat E.A. van Nierop, S. Blben, M.P. Brenner, How bumps on whale flippers delay stall: an aerodynamic model. Phys. Rev. Lett. 100, 054502 (2008)CrossRef E.A. van Nierop, S. Blben, M.P. Brenner, How bumps on whale flippers delay stall: an aerodynamic model. Phys. Rev. Lett. 100, 054502 (2008)CrossRef
84.
Zurück zum Zitat A.S.H. Lau, S. Haeri, J.W. Kim, The effect of wavy leading edge on aerofoil-gust interaction noise. J. Sound Vib. 332(24), 6234–6253 (2013)CrossRef A.S.H. Lau, S. Haeri, J.W. Kim, The effect of wavy leading edge on aerofoil-gust interaction noise. J. Sound Vib. 332(24), 6234–6253 (2013)CrossRef
85.
Zurück zum Zitat J. Turner, J. W. Kim, P. Chaitanya and P. Joseph, “Towards understanding aerofoils with dual-frequency wavy leading edges interacting with vortical disturbances,” AIAA Paper 2016-2951, 2016 J. Turner, J. W. Kim, P. Chaitanya and P. Joseph, “Towards understanding aerofoils with dual-frequency wavy leading edges interacting with vortical disturbances,” AIAA Paper 2016-2951, 2016
86.
Zurück zum Zitat J.E. Ffowcs-Williams, D.L. Hawkings, Sound generation by turbulence and surfaces in arbitrary motion. Proc. R. Soc. A. 264(1151), 321–342 (1969)MATH J.E. Ffowcs-Williams, D.L. Hawkings, Sound generation by turbulence and surfaces in arbitrary motion. Proc. R. Soc. A. 264(1151), 321–342 (1969)MATH
87.
Zurück zum Zitat J. Lighthill, On sound generated aerodynamically. I. General theory. Proc. R. Soc. A. 211, 546–587 (1952)MathSciNetMATH J. Lighthill, On sound generated aerodynamically. I. General theory. Proc. R. Soc. A. 211, 546–587 (1952)MathSciNetMATH
88.
Zurück zum Zitat G. Rahier, M. Huet, J. Prieur, Additional terms for the use of Ffowcs-Williams and Hawkings surface integrals in turbulent flows. Comput. Fluids 120, 158–172 (2015)MathSciNetMATHCrossRef G. Rahier, M. Huet, J. Prieur, Additional terms for the use of Ffowcs-Williams and Hawkings surface integrals in turbulent flows. Comput. Fluids 120, 158–172 (2015)MathSciNetMATHCrossRef
89.
Zurück zum Zitat S.Y. Zhong, X. Zhang, A sound extrapolation method for aeroacoustics far-field prediction in presence of vortical waves. J. Fluid Mech. 820, 424–450 (2017)MathSciNetMATHCrossRef S.Y. Zhong, X. Zhang, A sound extrapolation method for aeroacoustics far-field prediction in presence of vortical waves. J. Fluid Mech. 820, 424–450 (2017)MathSciNetMATHCrossRef
90.
Zurück zum Zitat F. Farassat, G.P. Succi, A review of propeller discrete frequency noise prediction technology with emphasis on two current methods for time domain calculations. J. Sound Vib. 71(3), 399–419 (1980)CrossRef F. Farassat, G.P. Succi, A review of propeller discrete frequency noise prediction technology with emphasis on two current methods for time domain calculations. J. Sound Vib. 71(3), 399–419 (1980)CrossRef
91.
92.
Zurück zum Zitat G. Lilley, “Appendix: generation of sound in a mixing region. Fourth monthly progress report on contract F-33615-71-C-1663,” Lockheed Aircraft Co., 1971 G. Lilley, “Appendix: generation of sound in a mixing region. Fourth monthly progress report on contract F-33615-71-C-1663,” Lockheed Aircraft Co., 1971
93.
Zurück zum Zitat S.Y. Zhong, X. Zhang, On the frequency domain formulation of the generalized sound extrapolation method. J. Acoust. Soc. Am. 144(1), 24–31 (2018)CrossRef S.Y. Zhong, X. Zhang, On the frequency domain formulation of the generalized sound extrapolation method. J. Acoust. Soc. Am. 144(1), 24–31 (2018)CrossRef
94.
Zurück zum Zitat S.Y. Zhong, X. Zhang, X. Huang, A comparison of acoustic far-field prediction methods for turbulent flows. Int. J. Aeroacoustics 18(6–7), 579–595 (2019)CrossRef S.Y. Zhong, X. Zhang, X. Huang, A comparison of acoustic far-field prediction methods for turbulent flows. Int. J. Aeroacoustics 18(6–7), 579–595 (2019)CrossRef
Metadaten
Titel
Broadband Aerodynamic Noise Simulation Using Synthetic Turbulence Methods
verfasst von
Xin Zhang
Siyang Zhong
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-64807-7_18

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.