Skip to main content
Erschienen in: Glass and Ceramics 3-4/2013

01.07.2013

Broadband luminescence in nanostructured glasses

verfasst von: N. V. Golubev, E. S. Ignat’eva, R. Lorenzi, A. Paleari, V. N. Sigaev

Erschienen in: Glass and Ceramics | Ausgabe 3-4/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The mechanism of broadband near-IR luminescence in the process of nanostructuring of Ni2+-activated glasses in the system R2O–Ga2O3–SiO2–GeO2 (R = Li, Na) at the initial stage of phase separation is described.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. N. Sigaev, S. Yu. Stefanovich, B. Champagnon, et al., “Amorphous nanostructuring in potassium niobium silicate glasses by SANS and SHG: a new mechanism for second-order optical non-linearity of glass,” J. Non-Cryst. Solids, 306, 238–248 (2002).CrossRef V. N. Sigaev, S. Yu. Stefanovich, B. Champagnon, et al., “Amorphous nanostructuring in potassium niobium silicate glasses by SANS and SHG: a new mechanism for second-order optical non-linearity of glass,” J. Non-Cryst. Solids, 306, 238–248 (2002).CrossRef
2.
Zurück zum Zitat Y. Teng, K. Sharafudeen, Sh. Zhou, and J. Qui, “Glass-ceramics for photonic devices,” J. Ceram. Soc. Jpn., 120, 458–466 (2012).CrossRef Y. Teng, K. Sharafudeen, Sh. Zhou, and J. Qui, “Glass-ceramics for photonic devices,” J. Ceram. Soc. Jpn., 120, 458–466 (2012).CrossRef
3.
Zurück zum Zitat G. H. Beall and L. R. Pinckney, “Nanophase glass-ceramics,” J. Am. Ceram. Soc., 82, 5–16 (1999).CrossRef G. H. Beall and L. R. Pinckney, “Nanophase glass-ceramics,” J. Am. Ceram. Soc., 82, 5–16 (1999).CrossRef
4.
Zurück zum Zitat T. Suzuki, K. Horibuchi, and Y. Ohishi, “Structural and optical properties of ZnO–Al2O3–SiO2 system glass-ceramics containing Ni2+-doped nanocrystals,” J. Non-Cryst. Solids, 351, 2304–2309 (2005).CrossRef T. Suzuki, K. Horibuchi, and Y. Ohishi, “Structural and optical properties of ZnO–Al2O3–SiO2 system glass-ceramics containing Ni2+-doped nanocrystals,” J. Non-Cryst. Solids, 351, 2304–2309 (2005).CrossRef
5.
Zurück zum Zitat B. Wu, Sh. Zhou, J. Qiu, et al. “Transparent Ni2+-doped MgO–Al2O3–SiO2 glass-ceramics with broadband infrared luminescence,” Chin. Phys. Lett., 23, 2778 (2006).CrossRef B. Wu, Sh. Zhou, J. Qiu, et al. “Transparent Ni2+-doped MgO–Al2O3–SiO2 glass-ceramics with broadband infrared luminescence,” Chin. Phys. Lett., 23, 2778 (2006).CrossRef
6.
Zurück zum Zitat S. Zhou, N. Jiang, H. Dong, et al., “Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics,” Nanotechnology, 19, 015702 (2008).CrossRef S. Zhou, N. Jiang, H. Dong, et al., “Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics,” Nanotechnology, 19, 015702 (2008).CrossRef
7.
Zurück zum Zitat T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O–Ga2O3–SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett., 86, 131903–131906 (2005).CrossRef T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O–Ga2O3–SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett., 86, 131903–131906 (2005).CrossRef
8.
Zurück zum Zitat T. Suzuki, Y. Arai, and Y. Ohishi, “Crystallization processes of Li2O–Ga2O3–SiO2–NiO system glasses,” J. Non-Cryst. Solids, 353, 36–43 (2007).CrossRef T. Suzuki, Y. Arai, and Y. Ohishi, “Crystallization processes of Li2O–Ga2O3–SiO2–NiO system glasses,” J. Non-Cryst. Solids, 353, 36–43 (2007).CrossRef
9.
Zurück zum Zitat T. Suzuki, Y. Arai, and Y. Ohishi, “Quantum efficiencies of nearinfrared emission from Ni2+-doped glass-ceramics,” J. Luminescence, 128, 603–609 (2008).CrossRef T. Suzuki, Y. Arai, and Y. Ohishi, “Quantum efficiencies of nearinfrared emission from Ni2+-doped glass-ceramics,” J. Luminescence, 128, 603–609 (2008).CrossRef
10.
Zurück zum Zitat B. Wu, J. Ruan, J. Ren, et al., “Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped LiGa5O8 nanocrystals,” Appl. Phys. Lett., 92, 041110 (2008).CrossRef B. Wu, J. Ruan, J. Ren, et al., “Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped LiGa5O8 nanocrystals,” Appl. Phys. Lett., 92, 041110 (2008).CrossRef
11.
Zurück zum Zitat S. Zhou, G. Feng, B. Wu, et al., “Intense Infrared luminescence in transparent glass-ceramics containing β-Ga2O3: Ni2+ nanocrystals,” J. Phys. Chem. C, 111, 7335–7338 (2007).CrossRef S. Zhou, G. Feng, B. Wu, et al., “Intense Infrared luminescence in transparent glass-ceramics containing β-Ga2O3: Ni2+ nanocrystals,” J. Phys. Chem. C, 111, 7335–7338 (2007).CrossRef
12.
Zurück zum Zitat N. V. Golubev, V. I. Savinkov, E. S. Ignat’eva, et al., “Nickel activated gallium-containing glasses, luminescing in the near-IR range,” Fiz. Khim. Stekla, 36, 835–842 (2010). N. V. Golubev, V. I. Savinkov, E. S. Ignat’eva, et al., “Nickel activated gallium-containing glasses, luminescing in the near-IR range,” Fiz. Khim. Stekla, 36, 835–842 (2010).
13.
Zurück zum Zitat V. N. Sigaev, N. V. Golubev. E. S. Ignat’eva, et al., “Nickel-assisted growth and selective doping of spinel-like gallium oxide nanocrystals in germano-silicate glasses for infrared broadband light emission,” Nanotechnology, 23, 015708–015715 (2012).CrossRef V. N. Sigaev, N. V. Golubev. E. S. Ignat’eva, et al., “Nickel-assisted growth and selective doping of spinel-like gallium oxide nanocrystals in germano-silicate glasses for infrared broadband light emission,” Nanotechnology, 23, 015708–015715 (2012).CrossRef
14.
Zurück zum Zitat V. M. Mashinsky, N. M. Karatun, V. A. Bogatyrev, et al., “Microfluorescence analysis of nanostructuring inhomogeneity in optical fibers with embedded gallium oxide nanocrystals,” Microsc. Microanal., 18, 259–265 (2012). V. M. Mashinsky, N. M. Karatun, V. A. Bogatyrev, et al., “Microfluorescence analysis of nanostructuring inhomogeneity in optical fibers with embedded gallium oxide nanocrystals,” Microsc. Microanal., 18, 259–265 (2012).
15.
Zurück zum Zitat V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, et al., “Native amorphous nanoheterogeneity in gallium germanosilicates as a tool for driving Ga2O3 nanocrystal formation in glass for optical devices,” Nanoscale, 5, 299 (2013).CrossRef V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, et al., “Native amorphous nanoheterogeneity in gallium germanosilicates as a tool for driving Ga2O3 nanocrystal formation in glass for optical devices,” Nanoscale, 5, 299 (2013).CrossRef
16.
Zurück zum Zitat B. Wu, S. Zhou, J. Ren, et al., “Enhanced luminescence from transparent Ni2+-doped MgO–Al2O3–SiO2 glass ceramics by Ga2O3 addition,” J. Phys. Chem. Solids, 69, 891–894 (2008).CrossRef B. Wu, S. Zhou, J. Ren, et al., “Enhanced luminescence from transparent Ni2+-doped MgO–Al2O3–SiO2 glass ceramics by Ga2O3 addition,” J. Phys. Chem. Solids, 69, 891–894 (2008).CrossRef
17.
Zurück zum Zitat L. A. Reznitskii, Calorimetry of Solids (Structural, Magnetic, Electronic Transformations) [in Russian], Izd. MGU, Moscow (1981). L. A. Reznitskii, Calorimetry of Solids (Structural, Magnetic, Electronic Transformations) [in Russian], Izd. MGU, Moscow (1981).
18.
Zurück zum Zitat R. Moncorge, J. Thery, and D. Vivien, “Enhancement of fluorescence from octahedrally coordinated Ni2+ in LaMgAl11O19 materials by Al3+/Ga3+ ion substitution,” J. Luminescence, 43, 167–172 (1989).CrossRef R. Moncorge, J. Thery, and D. Vivien, “Enhancement of fluorescence from octahedrally coordinated Ni2+ in LaMgAl11O19 materials by Al3+/Ga3+ ion substitution,” J. Luminescence, 43, 167–172 (1989).CrossRef
19.
Zurück zum Zitat T. Suzuki, G. S. Murugan, and Y. Ohishi, “Spectroscopic properties of a novel near-infrared tunable laser material Ni: MgGa2O4,” J. Luminescence, 113, 265–270 (2005).CrossRef T. Suzuki, G. S. Murugan, and Y. Ohishi, “Spectroscopic properties of a novel near-infrared tunable laser material Ni: MgGa2O4,” J. Luminescence, 113, 265–270 (2005).CrossRef
20.
Zurück zum Zitat T. Wang, Sh. S. Farvid, M. Abulikemu, and P. V. Radovanovic, “Size-tunable phosphorescence in colloidal metastable γ-Ga2O3 nanocrystals,” J. Am. Chem. Soc., 132, 9250–9252 (2010).CrossRef T. Wang, Sh. S. Farvid, M. Abulikemu, and P. V. Radovanovic, “Size-tunable phosphorescence in colloidal metastable γ-Ga2O3 nanocrystals,” J. Am. Chem. Soc., 132, 9250–9252 (2010).CrossRef
21.
Zurück zum Zitat S. K. Dubrovo and I. S. Lileev, “Glassy gallosilicates and their properties,” Zh. Prikl. Khim., 33, 1471–1476 (1960). S. K. Dubrovo and I. S. Lileev, “Glassy gallosilicates and their properties,” Zh. Prikl. Khim., 33, 1471–1476 (1960).
22.
Zurück zum Zitat J. H. Campbell, T. I. Suratwala, C. B. Thorsness, et al., “Continuous melting of phosphate laser glasses,” J. Non-Cryst. Solids, 263–264, 342–357 (2000).CrossRef J. H. Campbell, T. I. Suratwala, C. B. Thorsness, et al., “Continuous melting of phosphate laser glasses,” J. Non-Cryst. Solids, 263–264, 342–357 (2000).CrossRef
23.
Zurück zum Zitat M. K. Murphy and K. Emery, “Properties and structure of glasses in the system M2O–Ga2O3–GeO2 (M = Li, Na, K),” Phys. Chem. Glasses, 8, 26–29 (1967). M. K. Murphy and K. Emery, “Properties and structure of glasses in the system M2O–Ga2O3–GeO2 (M = Li, Na, K),” Phys. Chem. Glasses, 8, 26–29 (1967).
24.
Zurück zum Zitat K. Tanaka, T. Mukai, Ts. Ishiham, et al., “Preparation and optical properties of transparent glass-ceramics containing cobalt (II) ions,” J. Am. Ceram. Soc., 76, 2839–2845 (1993).CrossRef K. Tanaka, T. Mukai, Ts. Ishiham, et al., “Preparation and optical properties of transparent glass-ceramics containing cobalt (II) ions,” J. Am. Ceram. Soc., 76, 2839–2845 (1993).CrossRef
25.
Zurück zum Zitat N. S. Andreev, O. V. Mazurin, E. A. Porai-Koshits, et al., Liquation Phenomena in Glasses [in Russian], Nauka, Leningrad (1974). N. S. Andreev, O. V. Mazurin, E. A. Porai-Koshits, et al., Liquation Phenomena in Glasses [in Russian], Nauka, Leningrad (1974).
26.
Zurück zum Zitat V. V. Golubkov, O. S. Dymshits, and A. A. Zhilin, “Effect of nickel oxide addition on phase decomposition in lithium-aluminum-silicate glasses containing titanium dioxide,” Fiz. Khim. Stekla, 10, 155–161 (1984). V. V. Golubkov, O. S. Dymshits, and A. A. Zhilin, “Effect of nickel oxide addition on phase decomposition in lithium-aluminum-silicate glasses containing titanium dioxide,” Fiz. Khim. Stekla, 10, 155–161 (1984).
27.
Zurück zum Zitat V. V. Golubkov, O. S. Dymshits, and A. A. Zhilin, “On phase separation and crystallization of glasses in the system MgO–Al2O3–SiO2–TiO2,” Fiz. Khim. Stekla, 29, 359–377 (2003). V. V. Golubkov, O. S. Dymshits, and A. A. Zhilin, “On phase separation and crystallization of glasses in the system MgO–Al2O3–SiO2–TiO2,” Fiz. Khim. Stekla, 29, 359–377 (2003).
28.
Zurück zum Zitat N. V. Kuleshova, V. G. Shcherbitsky, V. P. Mikhailov, et al., “Spectroscopy and excited-state absorption of Ni2+-doped MgA12O4,” J. Luminescence, 71, 265–268 (1997).CrossRef N. V. Kuleshova, V. G. Shcherbitsky, V. P. Mikhailov, et al., “Spectroscopy and excited-state absorption of Ni2+-doped MgA12O4,” J. Luminescence, 71, 265–268 (1997).CrossRef
Metadaten
Titel
Broadband luminescence in nanostructured glasses
verfasst von
N. V. Golubev
E. S. Ignat’eva
R. Lorenzi
A. Paleari
V. N. Sigaev
Publikationsdatum
01.07.2013
Verlag
Springer US
Erschienen in
Glass and Ceramics / Ausgabe 3-4/2013
Print ISSN: 0361-7610
Elektronische ISSN: 1573-8515
DOI
https://doi.org/10.1007/s10717-013-9524-7

Weitere Artikel der Ausgabe 3-4/2013

Glass and Ceramics 3-4/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.