Skip to main content

2018 | OriginalPaper | Buchkapitel

6. Buckling of Circular Cylindrical Shells

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter is devoted to the stability behavior of thin cylindrical shells. The basic governing equations of thin circular cylindrical shells employing the Donnell theory with the von-Karman geometrical non-linearity are derived. The nonlinear strain-displacement relations, the nonlinear equilibrium equations, and the linear stability equations are derived employing the variational formulations. The cylindrical shell under uniform compressive axial load is considered and the buckling load is obtained and given by closed form solution. Thermal buckling of cylindrical shell made of FGM for the uniform temperature rise, linear radial temperature, and the nonlinear radial temperature are presented and the effect of piezo-control is examined. Buckling and postbuckling of thin cylindrical shells with piezo-control under thermal loads is discussed and the chapter concludes with the stability discussion of cylindrical shells on elastic foundation. The buckling loads of cylindrical shells of isotropic/homogeneous material are derived by simply setting proper values for the power law index of the FG materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Brush, D. O., & Almroth, B. O. (1975). Buckling of bars, plates and shells. New York: McGraw-Hill.MATH Brush, D. O., & Almroth, B. O. (1975). Buckling of bars, plates and shells. New York: McGraw-Hill.MATH
2.
Zurück zum Zitat Eslami, M. R. (2010). Thermo-Mechanical buckling of composite plates and shells. Tehran: Amirkabir University Press. Eslami, M. R. (2010). Thermo-Mechanical buckling of composite plates and shells. Tehran: Amirkabir University Press.
3.
Zurück zum Zitat Hetnarski, R. B., & Eslami, M. R. (2009). Thermal stresses, advanced theory and applications. Berlin: Springer. Hetnarski, R. B., & Eslami, M. R. (2009). Thermal stresses, advanced theory and applications. Berlin: Springer.
4.
Zurück zum Zitat Eslami, M. R., Ziaii, A. R., & Ghorbanpour, A. (1996). Thermoelastic buckling of thin cylindrical shells based on improved Donnell equations. Journal of Thermal Stresses, 19, 299–316.CrossRef Eslami, M. R., Ziaii, A. R., & Ghorbanpour, A. (1996). Thermoelastic buckling of thin cylindrical shells based on improved Donnell equations. Journal of Thermal Stresses, 19, 299–316.CrossRef
5.
Zurück zum Zitat Eslami, M. R., & Javaheri, R. (1999). Thermal and mechanical buckling of composite cylindrical shells. Journal of Thermal Stresses, 22(6), 527–545.CrossRef Eslami, M. R., & Javaheri, R. (1999). Thermal and mechanical buckling of composite cylindrical shells. Journal of Thermal Stresses, 22(6), 527–545.CrossRef
6.
Zurück zum Zitat Eslami, M. R., & Shariyat, M. (1999). A high-order theory for dynamic buckling and postbuckling analysis of laminated cylindrical shell. ASME Journal of Pressure Vessel Technology, 121, 94–102.CrossRef Eslami, M. R., & Shariyat, M. (1999). A high-order theory for dynamic buckling and postbuckling analysis of laminated cylindrical shell. ASME Journal of Pressure Vessel Technology, 121, 94–102.CrossRef
7.
Zurück zum Zitat Eslami, M. R., & Shariyat, M. (1999). June). Dynamic buckling and postbuckling of imperfect orthotropic cylindrical shells under mechanical and thermal loads, based on the three-dimensional theory of elasticity. Transactions of the ASME Journal of Applied Mechanics, 66, 476–484.CrossRef Eslami, M. R., & Shariyat, M. (1999). June). Dynamic buckling and postbuckling of imperfect orthotropic cylindrical shells under mechanical and thermal loads, based on the three-dimensional theory of elasticity. Transactions of the ASME Journal of Applied Mechanics, 66, 476–484.CrossRef
8.
Zurück zum Zitat Eslami, M. R., & Shariyat, M. (1996). November). Elastic, plastic, and creep buckling of imperfect cylinders under mechanical and thermal loading. Transactions of the ASME Journal of Pressure Vessel Technology, 118, 27–36.CrossRef Eslami, M. R., & Shariyat, M. (1996). November). Elastic, plastic, and creep buckling of imperfect cylinders under mechanical and thermal loading. Transactions of the ASME Journal of Pressure Vessel Technology, 118, 27–36.CrossRef
9.
Zurück zum Zitat Eslami, M. R., & Shahsiah, R. (2001). Thermal buckling of imperfect cylindrical shells. Journala of Thermal Stresses, 24(1), 71–90.CrossRef Eslami, M. R., & Shahsiah, R. (2001). Thermal buckling of imperfect cylindrical shells. Journala of Thermal Stresses, 24(1), 71–90.CrossRef
10.
Zurück zum Zitat Birman, V., & Bert, C. W. (1993). Buckling and Post-buckling of composite plates and shells subjected to elevated temperature. Transactions of the ASME Journal of Applied Mechanics, 60, 514–519.CrossRefMATH Birman, V., & Bert, C. W. (1993). Buckling and Post-buckling of composite plates and shells subjected to elevated temperature. Transactions of the ASME Journal of Applied Mechanics, 60, 514–519.CrossRefMATH
11.
Zurück zum Zitat Shen, H. S. (1997). Post buckling analysis of imperfect stiffened laminated cylindrical shells under combined external pressure and axial compression. Computers and Structures, 63, 335–348.CrossRefMATH Shen, H. S. (1997). Post buckling analysis of imperfect stiffened laminated cylindrical shells under combined external pressure and axial compression. Computers and Structures, 63, 335–348.CrossRefMATH
12.
Zurück zum Zitat Shen, H. S. (1998). Postbuckling analysis of imperfect stiffened laminated cylindrical shells under combined external pressure and thermal loading. International Journal of Mechanical Sciences, 40, 339–955.CrossRefMATH Shen, H. S. (1998). Postbuckling analysis of imperfect stiffened laminated cylindrical shells under combined external pressure and thermal loading. International Journal of Mechanical Sciences, 40, 339–955.CrossRefMATH
13.
Zurück zum Zitat Shen, H. S. (1999). Thermomechanical postbuckling of composite laminated cylindrical shells with local geometric imperfections. International Journal of Solids and Structures, 36, 597–617.CrossRefMATH Shen, H. S. (1999). Thermomechanical postbuckling of composite laminated cylindrical shells with local geometric imperfections. International Journal of Solids and Structures, 36, 597–617.CrossRefMATH
14.
Zurück zum Zitat Iu, V. P., & Chia, C. Y. (1988). Effect of transverse shear on nonlinear vibration and postbuckling of anti-symmetric cross-ply imperfect cylindrical shells. International Journal of Mechanical Sciences, 30, 705–718.CrossRefMATH Iu, V. P., & Chia, C. Y. (1988). Effect of transverse shear on nonlinear vibration and postbuckling of anti-symmetric cross-ply imperfect cylindrical shells. International Journal of Mechanical Sciences, 30, 705–718.CrossRefMATH
15.
Zurück zum Zitat Reddy, J. N., & Savoia, M. (1992). Layer-wise shell theory for postbuckling of laminated circular cylindrical shells. AIAA Journal, 30, 2148–2154.CrossRefMATH Reddy, J. N., & Savoia, M. (1992). Layer-wise shell theory for postbuckling of laminated circular cylindrical shells. AIAA Journal, 30, 2148–2154.CrossRefMATH
16.
Zurück zum Zitat Snead, J. M., & Palazotto, A. N. (1983). Moisture and temperature effects on the instability of cylindrical composite panels. Journal of Aircraft, 20, 777–783.CrossRef Snead, J. M., & Palazotto, A. N. (1983). Moisture and temperature effects on the instability of cylindrical composite panels. Journal of Aircraft, 20, 777–783.CrossRef
17.
Zurück zum Zitat Lee, S. Y., & Yen, W. J. (1989). Hygrothermal effects on the stability of a cylindrical composite shell panel. Computers and Structures, 33, 551–559.CrossRefMATH Lee, S. Y., & Yen, W. J. (1989). Hygrothermal effects on the stability of a cylindrical composite shell panel. Computers and Structures, 33, 551–559.CrossRefMATH
18.
Zurück zum Zitat Palazotto, A. N., & Tisler, T. W. (1989). Experimental collapse determination of cylindrical composite panels with large cutouts under axial load. Composite Structures, 12, 61–78.CrossRef Palazotto, A. N., & Tisler, T. W. (1989). Experimental collapse determination of cylindrical composite panels with large cutouts under axial load. Composite Structures, 12, 61–78.CrossRef
19.
Zurück zum Zitat Palazotto, A. N. (1988). An experimental study of a curved composite panel with a cutout. American Society for Testing and Materials, 972, 191–202. Palazotto, A. N. (1988). An experimental study of a curved composite panel with a cutout. American Society for Testing and Materials, 972, 191–202.
20.
Zurück zum Zitat Horban, B. A., & Palazotto, A. N. (1987). Experimental buckling of cylindrical composite panels with eccentrically located circular delaminations. Journal of Spacecraft and Rockets, 24, 349–352.CrossRef Horban, B. A., & Palazotto, A. N. (1987). Experimental buckling of cylindrical composite panels with eccentrically located circular delaminations. Journal of Spacecraft and Rockets, 24, 349–352.CrossRef
21.
Zurück zum Zitat Siefert, G. R., & Palazotto, A. N. (1986). The effect of a centrally located midplane delamination on the stability of composite panels. Experimental Mechanics, 26, 330–336.CrossRef Siefert, G. R., & Palazotto, A. N. (1986). The effect of a centrally located midplane delamination on the stability of composite panels. Experimental Mechanics, 26, 330–336.CrossRef
22.
Zurück zum Zitat Dennis, S. T., & Palazotto, A. N. (1990). Large displacement and rotational formulation for laminated shells including parabolic transverse shear. International Journal of Nonlinear Mechanics, 25, 67–85.CrossRefMATH Dennis, S. T., & Palazotto, A. N. (1990). Large displacement and rotational formulation for laminated shells including parabolic transverse shear. International Journal of Nonlinear Mechanics, 25, 67–85.CrossRefMATH
23.
Zurück zum Zitat Dennis, S. T., & Palazotto, A. N. (1989). Transverse shear deformation in orthotropic cylindrical pressure vessels using a high-order shear theory. AIAA Journal, 27, 1441–1447.CrossRefMATH Dennis, S. T., & Palazotto, A. N. (1989). Transverse shear deformation in orthotropic cylindrical pressure vessels using a high-order shear theory. AIAA Journal, 27, 1441–1447.CrossRefMATH
24.
Zurück zum Zitat Tsai, C. T., Palazotto, A. N., & Dennis, S. T. (1991). Large rotation snap through buckling in laminated cylindrical panels. Finite Elements in Analysis and Design, 9, 65–75.CrossRef Tsai, C. T., Palazotto, A. N., & Dennis, S. T. (1991). Large rotation snap through buckling in laminated cylindrical panels. Finite Elements in Analysis and Design, 9, 65–75.CrossRef
25.
Zurück zum Zitat Dennis, S. T., & Palazotto, A. N. (1993). Effect of nonlinear curvature strains on the buckling of laminated plates and shells. International Journal for Numerical Methods in Engineering, 36, 595–610.CrossRefMATH Dennis, S. T., & Palazotto, A. N. (1993). Effect of nonlinear curvature strains on the buckling of laminated plates and shells. International Journal for Numerical Methods in Engineering, 36, 595–610.CrossRefMATH
26.
Zurück zum Zitat Schimmels, S. A., & Palazotto, A. N. (1994). Nonlinear geometric and material behavior of composite shells with large strains. Journal of Engineering Mechanics, 120, 320–345.CrossRef Schimmels, S. A., & Palazotto, A. N. (1994). Nonlinear geometric and material behavior of composite shells with large strains. Journal of Engineering Mechanics, 120, 320–345.CrossRef
27.
Zurück zum Zitat Palazotto, A. N., Chien, L. S., & Taylor, W. W. (1992). Stability characteristics of laminated cylindrical panels under transverse loading. AIAA Journal, 30, 1649–1653.CrossRef Palazotto, A. N., Chien, L. S., & Taylor, W. W. (1992). Stability characteristics of laminated cylindrical panels under transverse loading. AIAA Journal, 30, 1649–1653.CrossRef
28.
Zurück zum Zitat Chien, L. S., & Palazotto, A. N. (1992). Dynamic buckling of composite cylindrical panels with higher-order transverse shear subjected to a transverse concentrated load. International Journal of Nonlinear Mechanics, 27, 719–734.CrossRef Chien, L. S., & Palazotto, A. N. (1992). Dynamic buckling of composite cylindrical panels with higher-order transverse shear subjected to a transverse concentrated load. International Journal of Nonlinear Mechanics, 27, 719–734.CrossRef
29.
Zurück zum Zitat Schimmels, S. A., & Palazotto, A. N. (1992). Collapse characteristics of cylindrical panels under axial loads. AIAA Journal, 30, 1447–1466.CrossRef Schimmels, S. A., & Palazotto, A. N. (1992). Collapse characteristics of cylindrical panels under axial loads. AIAA Journal, 30, 1447–1466.CrossRef
30.
Zurück zum Zitat Shen, H. S. (2000). Hygrothermal effects on the postbuckling of composite laminated cylindrical shells. Composite Science and Technology, 60, 1227–1240.CrossRef Shen, H. S. (2000). Hygrothermal effects on the postbuckling of composite laminated cylindrical shells. Composite Science and Technology, 60, 1227–1240.CrossRef
31.
Zurück zum Zitat Ng, T. Y., Lam, Y., k., Liew, K. M., & Reddy, J. N. (2001). Dynamic stability analysis of functionally graded cylindrical shell under periodic axial loading. International Journal of Solids and Structures, 38, 1295–1300. Ng, T. Y., Lam, Y., k., Liew, K. M., & Reddy, J. N. (2001). Dynamic stability analysis of functionally graded cylindrical shell under periodic axial loading. International Journal of Solids and Structures, 38, 1295–1300.
32.
Zurück zum Zitat Shahsiah, R., & Eslami, M. R. (2003). Thermal buckling of functionally graded cylindrical shell. Journal of Thermal Stresses, 26(3), 277–295.CrossRef Shahsiah, R., & Eslami, M. R. (2003). Thermal buckling of functionally graded cylindrical shell. Journal of Thermal Stresses, 26(3), 277–295.CrossRef
33.
Zurück zum Zitat Shahsiah, R., & Eslami, M. R. (2003). Functionally graded cylindrical shell thermal buckling based on improved Donnell equations. AIAA Journal, 41(9), 1819–1826.CrossRef Shahsiah, R., & Eslami, M. R. (2003). Functionally graded cylindrical shell thermal buckling based on improved Donnell equations. AIAA Journal, 41(9), 1819–1826.CrossRef
34.
Zurück zum Zitat Shahsiah, R., & Eslami, M. R. (2003, July). Axisymmetric mechanical buckling of functionally graded cylindrical shell based on timoshenko technique. In: Proceedings, ICPVT-10, Vienna University of Technology, Austria, July 7–10, 2003. Shahsiah, R., & Eslami, M. R. (2003, July). Axisymmetric mechanical buckling of functionally graded cylindrical shell based on timoshenko technique. In: Proceedings, ICPVT-10, Vienna University of Technology, Austria, July 7–10, 2003.
35.
Zurück zum Zitat Bagherizadeh, E., Kiani, Y., & Eslami, M. R. (2011). Mechanical buckling of functionally graded material cylindrical shells surrounded by pasternak elastic foundation. Composite Structures, 93, 2063–2071.CrossRef Bagherizadeh, E., Kiani, Y., & Eslami, M. R. (2011). Mechanical buckling of functionally graded material cylindrical shells surrounded by pasternak elastic foundation. Composite Structures, 93, 2063–2071.CrossRef
36.
Zurück zum Zitat Shen, H. S. (2004). Thermal postbuckling behaviour of functionally graded cylindrical shells with temperature-dependent properties. International Journal of Solids and Structures, 41, 1961–1974.CrossRefMATH Shen, H. S. (2004). Thermal postbuckling behaviour of functionally graded cylindrical shells with temperature-dependent properties. International Journal of Solids and Structures, 41, 1961–1974.CrossRefMATH
37.
Zurück zum Zitat Donnell, L. H. (1934). A new theory for the buckling of thin cylinders under axial compression and bending. ASME Transactions, 56, 795–806. Donnell, L. H. (1934). A new theory for the buckling of thin cylinders under axial compression and bending. ASME Transactions, 56, 795–806.
38.
Zurück zum Zitat Donnell, L. H., & Wan, C. C. (1950). Effect of imperfections on buckling of thin cylinders and columns under axial compression. Journal of Applied Mechanics, 17, 73–83.MATH Donnell, L. H., & Wan, C. C. (1950). Effect of imperfections on buckling of thin cylinders and columns under axial compression. Journal of Applied Mechanics, 17, 73–83.MATH
39.
Zurück zum Zitat Donnell, L. H. (1956). Effect of imperfections on buckling of thin cylinders under external pressure. Journal of Applied Mechanics, 23, 569–575.MATHMathSciNet Donnell, L. H. (1956). Effect of imperfections on buckling of thin cylinders under external pressure. Journal of Applied Mechanics, 23, 569–575.MATHMathSciNet
40.
Zurück zum Zitat Tsouvalis, N. G., Zafeiratou, A. A., Papazoglou, V. J., Gabrielides, N. C., & Kaklis, P. D. (2001). Numerical modeling of composite laminated cylinders in compression using a novel imperfection modeling method. Composites, Part B: Engineering, 32, 387–399.CrossRef Tsouvalis, N. G., Zafeiratou, A. A., Papazoglou, V. J., Gabrielides, N. C., & Kaklis, P. D. (2001). Numerical modeling of composite laminated cylinders in compression using a novel imperfection modeling method. Composites, Part B: Engineering, 32, 387–399.CrossRef
41.
Zurück zum Zitat Petreli, A. S., & Tsouvalis, N. G. (2001). A parametric study of the effect of geometric imperfections on the buckling behavior of composite laminated cylinders. In Proceeding of the HELLAS-COMP 2001, Second National Conference on Composite Materials, Patras, Greece, 2001. Petreli, A. S., & Tsouvalis, N. G. (2001). A parametric study of the effect of geometric imperfections on the buckling behavior of composite laminated cylinders. In Proceeding of the HELLAS-COMP 2001, Second National Conference on Composite Materials, Patras, Greece, 2001.
42.
Zurück zum Zitat Wunderlich, W., & Albertin, U. (2002). Buckling behavior of imperfect spherical shells. International Journal of Non-Linear Mechanics, 37, 589–604.CrossRefMATH Wunderlich, W., & Albertin, U. (2002). Buckling behavior of imperfect spherical shells. International Journal of Non-Linear Mechanics, 37, 589–604.CrossRefMATH
43.
Zurück zum Zitat Shahsiah, R., & Eslami, M. R. (2003). Thermal and mechanical buckling of imperfect spherical cap. Journal of Thermal Stresses, 26(7), 723–737.CrossRef Shahsiah, R., & Eslami, M. R. (2003). Thermal and mechanical buckling of imperfect spherical cap. Journal of Thermal Stresses, 26(7), 723–737.CrossRef
44.
Zurück zum Zitat Mirzavand, B., Eslami, M. R., & Shahsiah, R. (2005). Effect of imperfections on thermal buckling of functionally graded cylindrical shells. AIAA Journal, 43(9), 2073–2076.CrossRef Mirzavand, B., Eslami, M. R., & Shahsiah, R. (2005). Effect of imperfections on thermal buckling of functionally graded cylindrical shells. AIAA Journal, 43(9), 2073–2076.CrossRef
45.
Zurück zum Zitat Mirzavand, B., & Eslami, M. R. (2006). Thermal buckling of imperfect functionally graded cylindrical shells based on the Wan-Donnell model. Journal of Thermal Stresses, 29, 37–55.CrossRef Mirzavand, B., & Eslami, M. R. (2006). Thermal buckling of imperfect functionally graded cylindrical shells based on the Wan-Donnell model. Journal of Thermal Stresses, 29, 37–55.CrossRef
46.
Zurück zum Zitat Mirzavand, B., & Eslami, M. R. (2005). Effect of imperfection on buckling of functionally graded cylindrical shells under axial compression. In Proceedings of the ISME Annual Conference, Isfahan, Iran, May 17–19, 2005. Mirzavand, B., & Eslami, M. R. (2005). Effect of imperfection on buckling of functionally graded cylindrical shells under axial compression. In Proceedings of the ISME Annual Conference, Isfahan, Iran, May 17–19, 2005.
47.
Zurück zum Zitat Timoshenko, S. P., & Giere, J. M. (1961). Theory of Elastic Stability. New York: McGraw-Hill. Timoshenko, S. P., & Giere, J. M. (1961). Theory of Elastic Stability. New York: McGraw-Hill.
48.
Zurück zum Zitat Shen, H. S. (2001). Postbuckling analysis of axially-loaded laminated cylindrical shells with piezoelectric actuators. European Journal of Mechanics - A/Solids, 20, 1007–1022.CrossRefMATH Shen, H. S. (2001). Postbuckling analysis of axially-loaded laminated cylindrical shells with piezoelectric actuators. European Journal of Mechanics - A/Solids, 20, 1007–1022.CrossRefMATH
49.
Zurück zum Zitat Shen, H. S. (2002). Thermal postbuckling analysis of laminated cylindrical shells with piezoelectric actuators. Composite Structures, 55, 13–22.CrossRef Shen, H. S. (2002). Thermal postbuckling analysis of laminated cylindrical shells with piezoelectric actuators. Composite Structures, 55, 13–22.CrossRef
50.
Zurück zum Zitat Shen, H. S. (2002). Postbuckling of laminated cylindrical shells with piezoelectric actuators under combined external pressure and heating. International Journal of Solids and Structures, 39, 4271–4289.CrossRefMATH Shen, H. S. (2002). Postbuckling of laminated cylindrical shells with piezoelectric actuators under combined external pressure and heating. International Journal of Solids and Structures, 39, 4271–4289.CrossRefMATH
51.
Zurück zum Zitat Shen, H. S., & Li, Q. S. (2002). Postbuckling of cross-ply laminated cylindrical shells with piezoelectric actuators under complex loading conditions. International Journal of Mechanical Sciences, 44, 1731–1754.CrossRefMATH Shen, H. S., & Li, Q. S. (2002). Postbuckling of cross-ply laminated cylindrical shells with piezoelectric actuators under complex loading conditions. International Journal of Mechanical Sciences, 44, 1731–1754.CrossRefMATH
52.
Zurück zum Zitat Ganesan, N., & Kadoli, R. (2003). Buckling and dynamic analysis of piezothermoelastic composite cylindrical shell. Composite Structures, 59, 45–60.CrossRef Ganesan, N., & Kadoli, R. (2003). Buckling and dynamic analysis of piezothermoelastic composite cylindrical shell. Composite Structures, 59, 45–60.CrossRef
53.
Zurück zum Zitat Correia, V. M. F., Soares, C. M. M., & Soares, C. A. M. (2003). Buckling optimization of composite laminated adaptive structures. Composite Structures, 62, 315–321.CrossRef Correia, V. M. F., Soares, C. M. M., & Soares, C. A. M. (2003). Buckling optimization of composite laminated adaptive structures. Composite Structures, 62, 315–321.CrossRef
54.
Zurück zum Zitat Shen, H. S. (2002). Postbuckling of axially loaded FGM hybrid cylindrical shells in thermal environments. Composites Science and Technology, 65, 16751690. Shen, H. S. (2002). Postbuckling of axially loaded FGM hybrid cylindrical shells in thermal environments. Composites Science and Technology, 65, 16751690.
55.
Zurück zum Zitat Mirzavand, B., & Eslami, M. R. (2007). Thermal buckling of simply supported piezoelectric FGM cylindrical shells. Journal of Thermal Stresses, 30(11), 1117–1135.CrossRef Mirzavand, B., & Eslami, M. R. (2007). Thermal buckling of simply supported piezoelectric FGM cylindrical shells. Journal of Thermal Stresses, 30(11), 1117–1135.CrossRef
56.
Zurück zum Zitat Sofiyev, A. H. (2003). Dynamic buckling of functionally graded cylindrical thin shells under non-periodic impulsive loading. Acta Mechanica, 165, 151163.CrossRefMATH Sofiyev, A. H. (2003). Dynamic buckling of functionally graded cylindrical thin shells under non-periodic impulsive loading. Acta Mechanica, 165, 151163.CrossRefMATH
57.
Zurück zum Zitat Sofiyev, A. H., & Schnack, E. (2004). The stability of functionally graded cylindrical shells under linearly increasing dynamic torsional loading. Engineering Structures, 26(10), 1321–1331.CrossRef Sofiyev, A. H., & Schnack, E. (2004). The stability of functionally graded cylindrical shells under linearly increasing dynamic torsional loading. Engineering Structures, 26(10), 1321–1331.CrossRef
58.
Zurück zum Zitat Shariyat, M. (2008). Dynamic buckling of suddenly loaded imperfect hybrid FGM cylindrical shells with temperature-dependent material properties under thermo-electro-mechanical loads. International Journal of Mechanical Sciences, 50(12), 1561–1571.CrossRef Shariyat, M. (2008). Dynamic buckling of suddenly loaded imperfect hybrid FGM cylindrical shells with temperature-dependent material properties under thermo-electro-mechanical loads. International Journal of Mechanical Sciences, 50(12), 1561–1571.CrossRef
59.
Zurück zum Zitat Mirzavand, B., Eslami, M. R., & Shakeri, M. (2010). Dynamic thermal postbuckling analysis of piezoelectric functionally graded cylindrical shells. Journal of Thermal Stresses, 33(7), 646–660.CrossRef Mirzavand, B., Eslami, M. R., & Shakeri, M. (2010). Dynamic thermal postbuckling analysis of piezoelectric functionally graded cylindrical shells. Journal of Thermal Stresses, 33(7), 646–660.CrossRef
60.
Zurück zum Zitat Correia, I. F. P., Mota Soares, C. M., Mota Soares, C. A., & Herskovits, J. (2004). Analysis of adaptive shell structures using a refined laminated model. Composite Structures, 66, 261–268.CrossRef Correia, I. F. P., Mota Soares, C. M., Mota Soares, C. A., & Herskovits, J. (2004). Analysis of adaptive shell structures using a refined laminated model. Composite Structures, 66, 261–268.CrossRef
61.
62.
Zurück zum Zitat Gilat, R., Feldman, E., & Aboudi, J. (1993). Axisymmetric response of nonlinearly elastic cylindrical shells to dynamic axial loads. International Journal of Impact Engineering, 13(4), 545–554.CrossRef Gilat, R., Feldman, E., & Aboudi, J. (1993). Axisymmetric response of nonlinearly elastic cylindrical shells to dynamic axial loads. International Journal of Impact Engineering, 13(4), 545–554.CrossRef
63.
Zurück zum Zitat Jones, R. M. (2006). Buckling of bars, plates, and shells. Blacksburg, Virginia: Bull Ridge. Jones, R. M. (2006). Buckling of bars, plates, and shells. Blacksburg, Virginia: Bull Ridge.
64.
Zurück zum Zitat Budiansky, B. (1970). Thermal and thermoelastic properties of isotropic composites. Journal of Composite Materials, 4, 286295.CrossRef Budiansky, B. (1970). Thermal and thermoelastic properties of isotropic composites. Journal of Composite Materials, 4, 286295.CrossRef
65.
Zurück zum Zitat Touloukian, Y. S. (1967). Thermophysical properties of high temperature solid materials. New York: MacMillan. Touloukian, Y. S. (1967). Thermophysical properties of high temperature solid materials. New York: MacMillan.
66.
Zurück zum Zitat Xu, K., Noor, A. K., & Tang, Y. Y. (1995). Three-dimensional solutions for coupled thermoelectroelastic response of multilayered plates. Computer Methods in Applied Mechanics and Engineering, 126, 355–371.CrossRef Xu, K., Noor, A. K., & Tang, Y. Y. (1995). Three-dimensional solutions for coupled thermoelectroelastic response of multilayered plates. Computer Methods in Applied Mechanics and Engineering, 126, 355–371.CrossRef
67.
Zurück zum Zitat Sheng, G. G., & Wang, X. (2008). Thermal vibration, buckling and dynamic stability of functionally graded cylindrical shells embedded in an elastic medium. Journal of Reinforced Plastics and Composites, 27(1), 17–34. Sheng, G. G., & Wang, X. (2008). Thermal vibration, buckling and dynamic stability of functionally graded cylindrical shells embedded in an elastic medium. Journal of Reinforced Plastics and Composites, 27(1), 17–34.
68.
Zurück zum Zitat Shen, H. S. (2009). Postbuckling of shear deformable FGM cylindrical shells surrounded by an elastic medium. International Journal of Mechanical Sciences, 51, 372–383.CrossRef Shen, H. S. (2009). Postbuckling of shear deformable FGM cylindrical shells surrounded by an elastic medium. International Journal of Mechanical Sciences, 51, 372–383.CrossRef
69.
Zurück zum Zitat Shen, H. S., Yang, J., & Kitipornchai, S. (2010). Postbuckling of internal pressure loaded FGM cylindrical shells surrounded by an elastic medium. European Journal of Mechanics A/Solids, 29, 448–460.CrossRef Shen, H. S., Yang, J., & Kitipornchai, S. (2010). Postbuckling of internal pressure loaded FGM cylindrical shells surrounded by an elastic medium. European Journal of Mechanics A/Solids, 29, 448–460.CrossRef
70.
Zurück zum Zitat Luo, Y. F., & Teng, J. G. (1998). Stability analysis of shells of revolution on nonlinear elastic foundations. Journal of Computers and Structures, 69, 499–511.CrossRefMATH Luo, Y. F., & Teng, J. G. (1998). Stability analysis of shells of revolution on nonlinear elastic foundations. Journal of Computers and Structures, 69, 499–511.CrossRefMATH
71.
Zurück zum Zitat Golovko, K. G., Lugovoi, P. Z., & Meish, V. F. (2007). Solution of axisymmetric dynamics problems for cylindrical shells on an elastic foundation. International Applied Mechanics, 43(12), 1390–1395.CrossRef Golovko, K. G., Lugovoi, P. Z., & Meish, V. F. (2007). Solution of axisymmetric dynamics problems for cylindrical shells on an elastic foundation. International Applied Mechanics, 43(12), 1390–1395.CrossRef
72.
Zurück zum Zitat Paliwal, D. N., & Pandey, R. K. (1996). Free vibrations of circular cylindrical shell on Winkler and Pasternak foundations. Journal of Pressure Vessels and Piping, 69, 79–89.CrossRef Paliwal, D. N., & Pandey, R. K. (1996). Free vibrations of circular cylindrical shell on Winkler and Pasternak foundations. Journal of Pressure Vessels and Piping, 69, 79–89.CrossRef
73.
Zurück zum Zitat Tj, H. G., Mikami, T., Kanie, S., & Sato, N. (2006). Free vibration characteristics of cylindrical shells partially buried in elastic foundations. Journal of Sound and Vibration, 290, 785–793.CrossRef Tj, H. G., Mikami, T., Kanie, S., & Sato, N. (2006). Free vibration characteristics of cylindrical shells partially buried in elastic foundations. Journal of Sound and Vibration, 290, 785–793.CrossRef
74.
Zurück zum Zitat Shah, A. G., Mahmood, T., Naeem, N. N., Iqbal, Z., & Arshad, S. H. (2010). Vibrations of functionally graded cylindrical shells based on elastic foundations. Acta Mechanica, 211(3), 293–307.CrossRefMATH Shah, A. G., Mahmood, T., Naeem, N. N., Iqbal, Z., & Arshad, S. H. (2010). Vibrations of functionally graded cylindrical shells based on elastic foundations. Acta Mechanica, 211(3), 293–307.CrossRefMATH
75.
Zurück zum Zitat Mirzavand, B., & Eslami, M. R. (2008). Thermoelastic stability analysis of imperfect functionally graded cylindrical shells. Journal of Mechanics of Materials and Structures, 3(8), 1561–1572.CrossRef Mirzavand, B., & Eslami, M. R. (2008). Thermoelastic stability analysis of imperfect functionally graded cylindrical shells. Journal of Mechanics of Materials and Structures, 3(8), 1561–1572.CrossRef
Metadaten
Titel
Buckling of Circular Cylindrical Shells
verfasst von
M. Reza Eslami
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-62368-9_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.