Skip to main content

2018 | OriginalPaper | Buchkapitel

4. Buckling of Rectangular Plates

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The stability of rectangular plates with induced in-plane compressive stresses resulting from the mechanical or thermal loads is discussed in this chapter. The kinematical relations, constitutive law, the equilibrium equations, and the stability equations for a rectangular plate are derived and the classical boundary conditions are presented. The critical buckling loads of rectangular plates under thermal and mechanical in-plane compressive loads are derived and the existence of bifurcation load for each type of given loading condition are discussed. The effect of piezoelectric control on buckling of rectangular plates under thermoelastic loading is investigated. The rectangular plates on elastic foundation under mechanical and different types of thermal conditions namely; the uniform temperature rise and the linear and nonlinear temperature distributions across the thickness of plate, are then considered and the related thermal buckling loads are obtained. Post-buckling and the geometric imperfection of rectangular plates are then followed and the chapter concludes with the discussion on the effect of material temperature dependency on the thermal critical buckling loads.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Brush, D. O., & Almroth, B. O. (1975). Buckling of bars, plates, and shells. New York: McGraw Hill.MATH Brush, D. O., & Almroth, B. O. (1975). Buckling of bars, plates, and shells. New York: McGraw Hill.MATH
2.
Zurück zum Zitat Eslami, M. R. (2010). Thermo-mechanical buckling of composite plates and shells. Tehran: Amirkabir University Press. Eslami, M. R. (2010). Thermo-mechanical buckling of composite plates and shells. Tehran: Amirkabir University Press.
3.
Zurück zum Zitat Shimpi, R. P., & Patel, H. G. (2006). A two variable refined plate theory for orthotropic plate analysis. International Journal of Solids and Structures, 43(22–23), 6783–6799.MATHCrossRef Shimpi, R. P., & Patel, H. G. (2006). A two variable refined plate theory for orthotropic plate analysis. International Journal of Solids and Structures, 43(22–23), 6783–6799.MATHCrossRef
5.
Zurück zum Zitat Shen, H. S. (2007). Thermal post-buckling behavior of shear deformable FGM plates with temperature-dependent properties. International Journal of Mechanical Sciences, 49(4), 466–478.CrossRef Shen, H. S. (2007). Thermal post-buckling behavior of shear deformable FGM plates with temperature-dependent properties. International Journal of Mechanical Sciences, 49(4), 466–478.CrossRef
6.
Zurück zum Zitat Javaheri, R., & Eslami, M. R. (2002). Thermal buckling of functionally graded plates based on higher order theory. Journal of Thermal Stresses, 25(7), 603–625.CrossRef Javaheri, R., & Eslami, M. R. (2002). Thermal buckling of functionally graded plates based on higher order theory. Journal of Thermal Stresses, 25(7), 603–625.CrossRef
7.
Zurück zum Zitat Leissa, A. W. (1986). Conditions for laminated plates to remain flat under inplane loading. Composite Structures, 6(4), 261–270.CrossRef Leissa, A. W. (1986). Conditions for laminated plates to remain flat under inplane loading. Composite Structures, 6(4), 261–270.CrossRef
8.
Zurück zum Zitat Qatu, M., & Leissa, A. W. (1993). Buckling or transverse deflections of unsymmetrically laminated plates subjected to inplane loads. AIAA Journal, 31(1), 189–194.MATHCrossRef Qatu, M., & Leissa, A. W. (1993). Buckling or transverse deflections of unsymmetrically laminated plates subjected to inplane loads. AIAA Journal, 31(1), 189–194.MATHCrossRef
9.
Zurück zum Zitat Aydogdu, M. (2008). Conditions for functionally graded plates to remain flat under inplane loads by classical plate theory. Composite Structures, 82(1), 155–157.CrossRef Aydogdu, M. (2008). Conditions for functionally graded plates to remain flat under inplane loads by classical plate theory. Composite Structures, 82(1), 155–157.CrossRef
10.
Zurück zum Zitat Liew, K. M., Yang, J., & Kitipornchai, S. (2004). Thermal post-buckling of laminated plates comprising functionally graded materials with temperature-dependent properties. Journal of Applied Mechanics, Transactions of the ASME, 71(6), 839–850.MATHCrossRef Liew, K. M., Yang, J., & Kitipornchai, S. (2004). Thermal post-buckling of laminated plates comprising functionally graded materials with temperature-dependent properties. Journal of Applied Mechanics, Transactions of the ASME, 71(6), 839–850.MATHCrossRef
11.
Zurück zum Zitat Prakash, T., Singha, M. K., & Ganapathi, M. (2008). Thermal post-buckling analysis of FGM skew plates. Engineering Structures, 31(1), 22–32.CrossRef Prakash, T., Singha, M. K., & Ganapathi, M. (2008). Thermal post-buckling analysis of FGM skew plates. Engineering Structures, 31(1), 22–32.CrossRef
12.
Zurück zum Zitat Lee, Y. Y., Zhao, X., & Reddy, J. N. (2010). Post-buckling analysis of functionally graded plates subject to compressive and thermal loads. Computer Methods in Applied Mechanics and Engineering, 199(25–28), 1645–1653.MATHMathSciNetCrossRef Lee, Y. Y., Zhao, X., & Reddy, J. N. (2010). Post-buckling analysis of functionally graded plates subject to compressive and thermal loads. Computer Methods in Applied Mechanics and Engineering, 199(25–28), 1645–1653.MATHMathSciNetCrossRef
13.
Zurück zum Zitat Woo, J., Meguid, S. A., Stranart, J. C., & Liew, K. M. (2005). Thermomechanical post-buckling analysis of moderately thick functionally graded plates and shallow shells. International Journal of Mechanical Sciences, 47(8), 1147–1171.MATHCrossRef Woo, J., Meguid, S. A., Stranart, J. C., & Liew, K. M. (2005). Thermomechanical post-buckling analysis of moderately thick functionally graded plates and shallow shells. International Journal of Mechanical Sciences, 47(8), 1147–1171.MATHCrossRef
14.
Zurück zum Zitat Shen, S. H. (2007). Nonlinear thermal bending response of FGM plates due to heat conduction. Composites Part B: Engineering, 38(2), 201–215.CrossRef Shen, S. H. (2007). Nonlinear thermal bending response of FGM plates due to heat conduction. Composites Part B: Engineering, 38(2), 201–215.CrossRef
15.
Zurück zum Zitat Liew, K. M., Yang, J., & Kitipornchai, S. (2003). Post-buckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading. International Journal of Solids and Structures, 40(15), 3869–3892.MATHCrossRef Liew, K. M., Yang, J., & Kitipornchai, S. (2003). Post-buckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading. International Journal of Solids and Structures, 40(15), 3869–3892.MATHCrossRef
16.
Zurück zum Zitat Yang, J., Liew, K. M., & Kitipornchai, S. (2006). Imperfection sensitivity of the post-buckling behavior of higher-order shear deformable functionally graded plates. International Journal of Solids and Structures, 43(17), 5247–5266.MATHCrossRef Yang, J., Liew, K. M., & Kitipornchai, S. (2006). Imperfection sensitivity of the post-buckling behavior of higher-order shear deformable functionally graded plates. International Journal of Solids and Structures, 43(17), 5247–5266.MATHCrossRef
17.
Zurück zum Zitat Kiani, Y., Bagherizadeh, E., & Eslami, M. R. (2011). Thermal buckling of clamped thin rectangular FGM plates resting on Pasternak elastic foundation (Three approximate analytical solutions). ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, 91(7), 581–593.MATHMathSciNetCrossRef Kiani, Y., Bagherizadeh, E., & Eslami, M. R. (2011). Thermal buckling of clamped thin rectangular FGM plates resting on Pasternak elastic foundation (Three approximate analytical solutions). ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, 91(7), 581–593.MATHMathSciNetCrossRef
18.
Zurück zum Zitat Leissa, A. W. (1992). Review of recent developments in laminated composite plate buckling analysis. Composite Material Technology, 45, 1–7. Leissa, A. W. (1992). Review of recent developments in laminated composite plate buckling analysis. Composite Material Technology, 45, 1–7.
19.
Zurück zum Zitat Tauchert, T. R. (1991). Thermally induced flexure, buckling and vibration of plates. Applied Mechanics Review, 44(8), 347–360.CrossRef Tauchert, T. R. (1991). Thermally induced flexure, buckling and vibration of plates. Applied Mechanics Review, 44(8), 347–360.CrossRef
20.
Zurück zum Zitat Javaheri, R., & Eslami, M. R. (2002). Thermal buckling of functionally graded plates. AIAA Journal, 40(1), 162–169.MATHCrossRef Javaheri, R., & Eslami, M. R. (2002). Thermal buckling of functionally graded plates. AIAA Journal, 40(1), 162–169.MATHCrossRef
21.
Zurück zum Zitat Javaheri, R., & Eslami, M. R. (2002). Buckling of functionally graded plates under inplane compressive loading. ZAMM, 82(4), 277–283.MATHCrossRef Javaheri, R., & Eslami, M. R. (2002). Buckling of functionally graded plates under inplane compressive loading. ZAMM, 82(4), 277–283.MATHCrossRef
22.
Zurück zum Zitat Wu, L. (2004). Thermal buckling of a simply supported moderately thick rectangular FGM plate. Composite Structures, 64(2), 211–218.CrossRef Wu, L. (2004). Thermal buckling of a simply supported moderately thick rectangular FGM plate. Composite Structures, 64(2), 211–218.CrossRef
23.
Zurück zum Zitat Chen, C. S., Hsu, C. Y., & Jiuh Tzou, G. (2009). Vibration and stability of functionally graded plates based on a higher-order deformation theory. Journal of Reinforced Plastics and Composites, 28(10), 1215–1234.CrossRef Chen, C. S., Hsu, C. Y., & Jiuh Tzou, G. (2009). Vibration and stability of functionally graded plates based on a higher-order deformation theory. Journal of Reinforced Plastics and Composites, 28(10), 1215–1234.CrossRef
24.
Zurück zum Zitat Matsunaga, H. (2008). Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory. Composite Structures, 82(4), 499–512.CrossRef Matsunaga, H. (2008). Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory. Composite Structures, 82(4), 499–512.CrossRef
25.
Zurück zum Zitat Matsunaga, H. (2009). Thermal buckling of functionally graded plates according to a 2D higher-order deformation theory. Composite Structures, 90(1), 76–86.MathSciNetCrossRef Matsunaga, H. (2009). Thermal buckling of functionally graded plates according to a 2D higher-order deformation theory. Composite Structures, 90(1), 76–86.MathSciNetCrossRef
26.
Zurück zum Zitat Ganapathi, M., & Prakash, T. (2006). Thermal buckling of simply supported functionally graded skew plates. Composite Structures, 74(2), 247–250.CrossRef Ganapathi, M., & Prakash, T. (2006). Thermal buckling of simply supported functionally graded skew plates. Composite Structures, 74(2), 247–250.CrossRef
27.
Zurück zum Zitat Ghannadpour, S. A. M., Ovesy, H. R., & Nassirnia, M. (2012). Buckling analysis of functionally graded plates under thermal loadings using the finite strip method. Computers and Structures, 108–109(1), 93–99.CrossRef Ghannadpour, S. A. M., Ovesy, H. R., & Nassirnia, M. (2012). Buckling analysis of functionally graded plates under thermal loadings using the finite strip method. Computers and Structures, 108–109(1), 93–99.CrossRef
28.
Zurück zum Zitat Chen, X. L., & Liew, K. M. (2004). Buckling of rectangular functionally graded material plates subjected to nonlinearly distributed in-plane edge loads. Smart Materials and Structures, 13(1), 1430–1437.CrossRef Chen, X. L., & Liew, K. M. (2004). Buckling of rectangular functionally graded material plates subjected to nonlinearly distributed in-plane edge loads. Smart Materials and Structures, 13(1), 1430–1437.CrossRef
29.
Zurück zum Zitat Chen, X. L., Zhao, Z. Y., & Liew, K. M. (2008). Stability of piezoelectric FGM rectangular plates subjected to non-uniformly distributed load, heat and voltage. Advances in Engineering Software, 39(1), 121–131.CrossRef Chen, X. L., Zhao, Z. Y., & Liew, K. M. (2008). Stability of piezoelectric FGM rectangular plates subjected to non-uniformly distributed load, heat and voltage. Advances in Engineering Software, 39(1), 121–131.CrossRef
30.
Zurück zum Zitat Zhao, X., Lee, Y. Y., & Liew, K. M. (2009). Mechanical and thermal buckling analysis of functionally graded plates. Composite Structures, 90(2), 161–171.CrossRef Zhao, X., Lee, Y. Y., & Liew, K. M. (2009). Mechanical and thermal buckling analysis of functionally graded plates. Composite Structures, 90(2), 161–171.CrossRef
31.
Zurück zum Zitat Bodaghi, M., & Saidi, A. R. (2011). Thermoelastic buckling behavior of thick functionally graded rectangular plates. Archive of Applied Mechanics, 81(11), 1555–1572.MATHCrossRef Bodaghi, M., & Saidi, A. R. (2011). Thermoelastic buckling behavior of thick functionally graded rectangular plates. Archive of Applied Mechanics, 81(11), 1555–1572.MATHCrossRef
32.
Zurück zum Zitat Bodaghi, M., & Saidi, A. R. (2011). Stability analysis of functionally graded rectangular plates under nonlinearly varying in-plane loading resting on elastic foundation. Archive of Applied Mechanics, 81(6), 765–780.MATHCrossRef Bodaghi, M., & Saidi, A. R. (2011). Stability analysis of functionally graded rectangular plates under nonlinearly varying in-plane loading resting on elastic foundation. Archive of Applied Mechanics, 81(6), 765–780.MATHCrossRef
33.
Zurück zum Zitat Bodaghi, M., & Saidi, A. R. (2010). Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory. Applied Mathematical Modelling, 34(11), 3659–3673.MATHMathSciNetCrossRef Bodaghi, M., & Saidi, A. R. (2010). Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory. Applied Mathematical Modelling, 34(11), 3659–3673.MATHMathSciNetCrossRef
34.
Zurück zum Zitat Kiani, Y., Bagherizadeh, E., & Eslami, M. R. (2011). Thermal and mechanical buckling of sandwich plates with FGM face sheets resting on the Pasternak elastic foundation. IMechE Part C: Journal of Mechanical Engineering Science, 226(1), 32–41.MATHCrossRef Kiani, Y., Bagherizadeh, E., & Eslami, M. R. (2011). Thermal and mechanical buckling of sandwich plates with FGM face sheets resting on the Pasternak elastic foundation. IMechE Part C: Journal of Mechanical Engineering Science, 226(1), 32–41.MATHCrossRef
35.
Zurück zum Zitat Zenkour, A. M. (2005). A comprehensive analysis of functionally graded sandwich plates: Part 2 buckling and free vibration. International Journal of Solids and Structures, 42(18–19), 5243–5258.MATHCrossRef Zenkour, A. M. (2005). A comprehensive analysis of functionally graded sandwich plates: Part 2 buckling and free vibration. International Journal of Solids and Structures, 42(18–19), 5243–5258.MATHCrossRef
36.
Zurück zum Zitat Zenkour, A. M., & Sobhy, M. (2010). Thermal buckling of various types of FGM sandwich plates. Composite Structures, 93(1), 93–102.CrossRef Zenkour, A. M., & Sobhy, M. (2010). Thermal buckling of various types of FGM sandwich plates. Composite Structures, 93(1), 93–102.CrossRef
37.
Zurück zum Zitat Meiche, N. E., Tounsi, A., Ziane, N., Mechab, I., & Adda Bedia, E. A. (2011). A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate. International Journal of Mechanical Sciences, 53(10), 237–247.CrossRef Meiche, N. E., Tounsi, A., Ziane, N., Mechab, I., & Adda Bedia, E. A. (2011). A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate. International Journal of Mechanical Sciences, 53(10), 237–247.CrossRef
38.
Zurück zum Zitat Yang, J., Liew, K. M., & Kitipornchai, S. (2005). Second-order statistics of the elastic buckling of functionally graded rectangular plates. Composites Science and Technology, 65(7–8), 1165–1175.CrossRef Yang, J., Liew, K. M., & Kitipornchai, S. (2005). Second-order statistics of the elastic buckling of functionally graded rectangular plates. Composites Science and Technology, 65(7–8), 1165–1175.CrossRef
39.
Zurück zum Zitat Nguyen-Xuan, H., Tran, L. V., Nguyen-Thoi, T., & Vu-Do, H. C. (2011). Analysis of functionally graded plates using an edge-based smoothed finite element method. Composite Structures, 93(11), 3019–3039.CrossRef Nguyen-Xuan, H., Tran, L. V., Nguyen-Thoi, T., & Vu-Do, H. C. (2011). Analysis of functionally graded plates using an edge-based smoothed finite element method. Composite Structures, 93(11), 3019–3039.CrossRef
40.
Zurück zum Zitat Neves, A. M. A., Ferreira, A. J. M., Carrera, E., Cinefra, M., Jorge, R. M. N., & Soares, C. M. M. (2012). Buckling analysis of sandwich plates with functionally graded skins using a new quasi-3D hyperbolic sine shear deformation theory and collocation with radial basis functions. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, 92(9), 749–766.MATHMathSciNetCrossRef Neves, A. M. A., Ferreira, A. J. M., Carrera, E., Cinefra, M., Jorge, R. M. N., & Soares, C. M. M. (2012). Buckling analysis of sandwich plates with functionally graded skins using a new quasi-3D hyperbolic sine shear deformation theory and collocation with radial basis functions. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, 92(9), 749–766.MATHMathSciNetCrossRef
41.
Zurück zum Zitat Uymaz, B., & Aydogdu, M. (2013). Three dimensional mechanical buckling of FG plates with general boundary conditions. Composite Structures, 96(1), 174–193.CrossRef Uymaz, B., & Aydogdu, M. (2013). Three dimensional mechanical buckling of FG plates with general boundary conditions. Composite Structures, 96(1), 174–193.CrossRef
42.
Zurück zum Zitat Uymaz, B., & Aydogdu, M. (2013). Three dimensional shear buckling of FG plates with various boundary conditions. Composite Structures, 96(1), 670–682.CrossRef Uymaz, B., & Aydogdu, M. (2013). Three dimensional shear buckling of FG plates with various boundary conditions. Composite Structures, 96(1), 670–682.CrossRef
43.
Zurück zum Zitat Na, K. S., & Kim, J. H. (2006). Three-dimensional thermomechanical buckling analysis for functionally graded composite plates. Composite Structures, 73(4), 413–422.CrossRef Na, K. S., & Kim, J. H. (2006). Three-dimensional thermomechanical buckling analysis for functionally graded composite plates. Composite Structures, 73(4), 413–422.CrossRef
44.
Zurück zum Zitat Wu, L. Y., Wu, C. H., & Huang, H. H. (2008). Shear buckling of thin plates using the spline collocation method. International Journal of Structural Stability and Dynamics, 8(4), 645–664.MATHCrossRef Wu, L. Y., Wu, C. H., & Huang, H. H. (2008). Shear buckling of thin plates using the spline collocation method. International Journal of Structural Stability and Dynamics, 8(4), 645–664.MATHCrossRef
45.
Zurück zum Zitat Shufrin, I., & Issenberger, M. (2008). Shear buckling of thin plates with constant in-plane stresses. International Journal of Structural Stability and Dynamics, 7(2), 179–192.MATHCrossRef Shufrin, I., & Issenberger, M. (2008). Shear buckling of thin plates with constant in-plane stresses. International Journal of Structural Stability and Dynamics, 7(2), 179–192.MATHCrossRef
46.
Zurück zum Zitat Shen, H. S., & Li, S. R. (2008). Post-buckling of sandwich plates with FGM face sheets and temperature-dependent properties. Composites Part B: Engineering, 39(2), 332–344.CrossRef Shen, H. S., & Li, S. R. (2008). Post-buckling of sandwich plates with FGM face sheets and temperature-dependent properties. Composites Part B: Engineering, 39(2), 332–344.CrossRef
47.
Zurück zum Zitat Pandey, M. D., & Sherbourne, A. N. (1991). Buckling of anisotropic composite plates under stress gradient. Journal of Engineering Mechanics, 117(2), 260–275.CrossRef Pandey, M. D., & Sherbourne, A. N. (1991). Buckling of anisotropic composite plates under stress gradient. Journal of Engineering Mechanics, 117(2), 260–275.CrossRef
48.
Zurück zum Zitat Chai, G. B., & Hoon, K. H. (1992). Buckling of generally laminated composite plates. Composite Science and Technology, 45, 125–133.CrossRef Chai, G. B., & Hoon, K. H. (1992). Buckling of generally laminated composite plates. Composite Science and Technology, 45, 125–133.CrossRef
49.
Zurück zum Zitat Chang, R. R., Chu, K. H., & Kam, T. Y. (1993). Design of laminated composite plates for maximum shear buckling loads. Journal of Energy Resources Technology, Transactions of the ASME, 115, 314–322.CrossRef Chang, R. R., Chu, K. H., & Kam, T. Y. (1993). Design of laminated composite plates for maximum shear buckling loads. Journal of Energy Resources Technology, Transactions of the ASME, 115, 314–322.CrossRef
50.
Zurück zum Zitat Kim, Y. S., & Hoa, S. V. (1995). Bi-axial buckling behavior of composite rectangular plates. Composite Structures, 31, 247–252.CrossRef Kim, Y. S., & Hoa, S. V. (1995). Bi-axial buckling behavior of composite rectangular plates. Composite Structures, 31, 247–252.CrossRef
51.
Zurück zum Zitat Tanigawa, Y., Matsumoto, M., & Akai, T. (1997). Optimization of material composition to minimize thermal stresses in nonhomogeneous plate subjected to unsteady heat supply. JSME International Journal, Series A, 40(1), 84–93. Tanigawa, Y., Matsumoto, M., & Akai, T. (1997). Optimization of material composition to minimize thermal stresses in nonhomogeneous plate subjected to unsteady heat supply. JSME International Journal, Series A, 40(1), 84–93.
52.
Zurück zum Zitat Birman, V. (1995). Buckling of functionally graded hybrid composite plates. In Proceeding of the 10th Conference on Engineering Mechanics (Vol. 2, pp. 1199–1202). Birman, V. (1995). Buckling of functionally graded hybrid composite plates. In Proceeding of the 10th Conference on Engineering Mechanics (Vol. 2, pp. 1199–1202).
53.
Zurück zum Zitat Shen, H. S. (2001). Thermal post-buckling of shear-deformable laminated plates with piezoelectric actuators. Composites Science and Technology, 61, 1931–1943.CrossRef Shen, H. S. (2001). Thermal post-buckling of shear-deformable laminated plates with piezoelectric actuators. Composites Science and Technology, 61, 1931–1943.CrossRef
54.
Zurück zum Zitat Varelis, D., & Saravanos, D. A. (2004). Coupled buckling and post-buckling analysis of active laminated piezoelectric composite plates. International Journal of Solids and Structures, 41, 1519–1538.MATHCrossRef Varelis, D., & Saravanos, D. A. (2004). Coupled buckling and post-buckling analysis of active laminated piezoelectric composite plates. International Journal of Solids and Structures, 41, 1519–1538.MATHCrossRef
55.
Zurück zum Zitat Shen, H. S. (2005). Post-buckling of FGM plates with piezoelectric actuators under thermo-electro-mechanical loadings. International Journal of Solids and Structures, 42, 6101–6121.MATHCrossRef Shen, H. S. (2005). Post-buckling of FGM plates with piezoelectric actuators under thermo-electro-mechanical loadings. International Journal of Solids and Structures, 42, 6101–6121.MATHCrossRef
56.
Zurück zum Zitat Mirzavand, B., & Eslami, M. R. (2011). A closed-form solution for thermal buckling of piezoelectric FGM rectangular plates with temperature-dependent properties. Acta Mechanica, 218, 87–101.MATHCrossRef Mirzavand, B., & Eslami, M. R. (2011). A closed-form solution for thermal buckling of piezoelectric FGM rectangular plates with temperature-dependent properties. Acta Mechanica, 218, 87–101.MATHCrossRef
57.
Zurück zum Zitat He, X. Q., Ng, T. Y., Siavashanker, S., & Liew, K. M. (2001). Active control of FGM plates with integrated piezoelectric sensors and actuators. International Journal of Solids and Structures, 38, 1641–1655.MATHCrossRef He, X. Q., Ng, T. Y., Siavashanker, S., & Liew, K. M. (2001). Active control of FGM plates with integrated piezoelectric sensors and actuators. International Journal of Solids and Structures, 38, 1641–1655.MATHCrossRef
58.
Zurück zum Zitat Meyers, C. A., & Hyer, M. W. (1991). Thermal buckling and post-buckling of symmetrically laminated composite plates. Journal of Thermal Stresses, 14, 519–540.CrossRef Meyers, C. A., & Hyer, M. W. (1991). Thermal buckling and post-buckling of symmetrically laminated composite plates. Journal of Thermal Stresses, 14, 519–540.CrossRef
59.
Zurück zum Zitat Shen, H. S. (1998). Thermal post-buckling analysis of imperfect Reissner-Mindlin plates on softening nonlinear elastic foundations. Journal of Engineering Mathematics, 33, 259–270.MATHCrossRef Shen, H. S. (1998). Thermal post-buckling analysis of imperfect Reissner-Mindlin plates on softening nonlinear elastic foundations. Journal of Engineering Mathematics, 33, 259–270.MATHCrossRef
60.
Zurück zum Zitat Noor, A. K., & Burton, W. S. (1992). Three-dimensional solutions for the thermal buckling of multilayered anisotropic plates. Journal of Engineering Mathematics, 118(4), 683–701. Noor, A. K., & Burton, W. S. (1992). Three-dimensional solutions for the thermal buckling of multilayered anisotropic plates. Journal of Engineering Mathematics, 118(4), 683–701.
61.
Zurück zum Zitat Aiello, M. A., & Ombres, L. (1999). Buckling and vibrations of unsymmetric laminates resting on elastic foundations under in-plane and shear forces. Composite Structures, 44(1), 31–41.CrossRef Aiello, M. A., & Ombres, L. (1999). Buckling and vibrations of unsymmetric laminates resting on elastic foundations under in-plane and shear forces. Composite Structures, 44(1), 31–41.CrossRef
62.
Zurück zum Zitat Tauchert, T. R. (1987). Thermal buckling of thick antisymmetric angle-ply laminates. Journal of Thermal Stresses, 10(2), 113–124.MathSciNetCrossRef Tauchert, T. R. (1987). Thermal buckling of thick antisymmetric angle-ply laminates. Journal of Thermal Stresses, 10(2), 113–124.MathSciNetCrossRef
63.
Zurück zum Zitat Radosavljevic, V., & Drazic, M. (2010). Exact solution for buckling of FCFC stepped rectangular plates. Applied Mathematical Modelling, 34(12), 3841–3849.MATHMathSciNetCrossRef Radosavljevic, V., & Drazic, M. (2010). Exact solution for buckling of FCFC stepped rectangular plates. Applied Mathematical Modelling, 34(12), 3841–3849.MATHMathSciNetCrossRef
64.
Zurück zum Zitat Dumir, P. C. (1988). Thermal post-buckling of rectangular plates on Pasternak elastic foundations. Mechanics Research Communications, 15(6), 371–379.MATHCrossRef Dumir, P. C. (1988). Thermal post-buckling of rectangular plates on Pasternak elastic foundations. Mechanics Research Communications, 15(6), 371–379.MATHCrossRef
65.
Zurück zum Zitat Raju, K. K., & Rao, G. V. (1989). Thermal post-buckling of thin simply-supported orthotropic square plates. Composite Structures, 12(2), 149–154.CrossRef Raju, K. K., & Rao, G. V. (1989). Thermal post-buckling of thin simply-supported orthotropic square plates. Composite Structures, 12(2), 149–154.CrossRef
66.
Zurück zum Zitat Shen, S. H., & Li, S. R. (2008). Post-buckling of sandwich plates with FGM face sheets and temperature-dependent properties. Composites Part B: Engineering, 39(2), 332–344.CrossRef Shen, S. H., & Li, S. R. (2008). Post-buckling of sandwich plates with FGM face sheets and temperature-dependent properties. Composites Part B: Engineering, 39(2), 332–344.CrossRef
67.
Zurück zum Zitat Yu, L. H., & Wang, C. Y. (2008). Buckling of rectangular plates on an elastic foundation using the Levy method. AIAA Journal, 46(12), 3163–3166.CrossRef Yu, L. H., & Wang, C. Y. (2008). Buckling of rectangular plates on an elastic foundation using the Levy method. AIAA Journal, 46(12), 3163–3166.CrossRef
68.
Zurück zum Zitat Akhavan, H., Hosseini Hashemi, Sh., Rokni Damavandi Taher, H., Alibeigloo, A., & Vahabi, Sh. (2009). Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part I: Buckling analysis. Computational Materials Science, 44(3), 968–978. Akhavan, H., Hosseini Hashemi, Sh., Rokni Damavandi Taher, H., Alibeigloo, A., & Vahabi, Sh. (2009). Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part I: Buckling analysis. Computational Materials Science, 44(3), 968–978.
69.
Zurück zum Zitat Shen, S. H. (1997). Thermal post-buckling analysis of imperfect shear-deformable plates on two-parameter elastic foundation. Computers and Structures, 63(6), 1187–1193.MATHCrossRef Shen, S. H. (1997). Thermal post-buckling analysis of imperfect shear-deformable plates on two-parameter elastic foundation. Computers and Structures, 63(6), 1187–1193.MATHCrossRef
70.
71.
Zurück zum Zitat Nguyen, T. K., Sab, K., & Bonnet, G. (2008). First-order shear deformation plate models for functionally graded materials. Composite Structures, 83(1), 25–36.CrossRef Nguyen, T. K., Sab, K., & Bonnet, G. (2008). First-order shear deformation plate models for functionally graded materials. Composite Structures, 83(1), 25–36.CrossRef
72.
Zurück zum Zitat Xia, X. K., & Shen, S. H. (2008). Vibration of post-buckled sandwich plates with FGM face sheets in a thermal environment. Journal of Sound and Vibration, 314(1–2), 254–274.CrossRef Xia, X. K., & Shen, S. H. (2008). Vibration of post-buckled sandwich plates with FGM face sheets in a thermal environment. Journal of Sound and Vibration, 314(1–2), 254–274.CrossRef
74.
Zurück zum Zitat Ahmed Houari, M. S., Benyoucef, S., Mechab, I., Tounsi, A., & Adda Bedia, E. A. (2011). Two-variable refined plate theory for thermoelastic bending analysis of functionally graded sandwich plates. Journal of Thermal Stresses, 34(4), 315–334.CrossRef Ahmed Houari, M. S., Benyoucef, S., Mechab, I., Tounsi, A., & Adda Bedia, E. A. (2011). Two-variable refined plate theory for thermoelastic bending analysis of functionally graded sandwich plates. Journal of Thermal Stresses, 34(4), 315–334.CrossRef
75.
Zurück zum Zitat Li, Q., Iu, V. P., & Kou, K. P. (2008). Three-dimensional vibration analysis of functionally graded material sandwich plates. Journal of Sound and Vibration, 311(1–2), 498–515.CrossRef Li, Q., Iu, V. P., & Kou, K. P. (2008). Three-dimensional vibration analysis of functionally graded material sandwich plates. Journal of Sound and Vibration, 311(1–2), 498–515.CrossRef
76.
Zurück zum Zitat Jalali, S. K., Naei, M. H., & Poorsolhjouy, A. (2010). Thermal stability analysis of circular functionally graded sandwich plates of variable thickness using pseudo-spectral method. Materials and Design, 31(10), 4755–4763.CrossRef Jalali, S. K., Naei, M. H., & Poorsolhjouy, A. (2010). Thermal stability analysis of circular functionally graded sandwich plates of variable thickness using pseudo-spectral method. Materials and Design, 31(10), 4755–4763.CrossRef
77.
Zurück zum Zitat Zenkour, A. M., & Alghamdi, N. A. (2010). Bending analysis of functionally graded sandwich plates under the effect of mechanical and thermal loads. Mechanics of Advanced Materials and Structures, 17(6), 419–423.CrossRef Zenkour, A. M., & Alghamdi, N. A. (2010). Bending analysis of functionally graded sandwich plates under the effect of mechanical and thermal loads. Mechanics of Advanced Materials and Structures, 17(6), 419–423.CrossRef
78.
Zurück zum Zitat Shen, H. S. (1997). Thermal post-buckling analysis of imperfect shear-deformable plates on two-parameter elastic foundation. Computers and Structures, 63(6), 1187–1193.MATHCrossRef Shen, H. S. (1997). Thermal post-buckling analysis of imperfect shear-deformable plates on two-parameter elastic foundation. Computers and Structures, 63(6), 1187–1193.MATHCrossRef
79.
Zurück zum Zitat Samsam Shariat, B. A., & Eslami, M. R. (2006). Thermal buckling of imperfect functionally graded plates. International Journal of Solids and Structures, 43, 4082–4096.MATHCrossRef Samsam Shariat, B. A., & Eslami, M. R. (2006). Thermal buckling of imperfect functionally graded plates. International Journal of Solids and Structures, 43, 4082–4096.MATHCrossRef
80.
Zurück zum Zitat Samsam Shariat, B. A., & Eslami, M. R. (2007). Buckling of thick functionally graded plates under mechanical and thermal loads. Composite Structures, 78(3), 433–439.CrossRef Samsam Shariat, B. A., & Eslami, M. R. (2007). Buckling of thick functionally graded plates under mechanical and thermal loads. Composite Structures, 78(3), 433–439.CrossRef
81.
Zurück zum Zitat Tung, H. V., & Duc, N. D. (2010). Nonlinear analysis of stability for functionally graded plates under mechanical and thermal loads. Composite Structures, 92(5), 1184–1191.CrossRef Tung, H. V., & Duc, N. D. (2010). Nonlinear analysis of stability for functionally graded plates under mechanical and thermal loads. Composite Structures, 92(5), 1184–1191.CrossRef
Metadaten
Titel
Buckling of Rectangular Plates
verfasst von
M. Reza Eslami
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-62368-9_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.