Skip to main content

2018 | OriginalPaper | Buchkapitel

Buffering Gene Expression Noise by MicroRNA Based Feedforward Regulation

verfasst von : Pavol Bokes, Michal Hojcka, Abhyudai Singh

Erschienen in: Computational Methods in Systems Biology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cells use various regulatory motifs, including feedforward loops, to control the intrinsic noise that arises in gene expression at low copy numbers. Here we study one such system, which is broadly inspired by the interaction between an mRNA molecule and an antagonistic microRNA molecule encoded by the same gene. The two reaction species are synchronously produced, individually degraded, and the second species (microRNA) exerts an antagonistic pressure on the first species (mRNA). Using linear-noise approximation, we show that the noise in the first species, which we quantify by the Fano factor, is sub-Poissonian, and exhibits a nonmonotonic response both to the species lifetime ratio and to the strength of the antagonistic interaction. Additionally, we use the Chemical Reaction Network Theory to prove that the first species distribution is Poissonian if the first species is much more stable than the second. Finally, we identify a special parametric regime, supporting a broad range of behaviour, in which the distribution can be analytically described in terms of the confluent hypergeometric limit function. We verify our analysis against large-scale kinetic Monte Carlo simulations. Our results indicate that, subject to specific physiological constraints, optimal parameter values can be found within the mRNA–microRNA motif that can benefit the cell by lowering the gene-expression noise.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abou-Jaoudé, W., Thieffry, D., Feret, J.: Formal derivation of qualitative dynamical models from biochemical networks. Biosystems 149, 70–112 (2016)CrossRef Abou-Jaoudé, W., Thieffry, D., Feret, J.: Formal derivation of qualitative dynamical models from biochemical networks. Biosystems 149, 70–112 (2016)CrossRef
2.
Zurück zum Zitat Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Washington, D.C. (1972)MATH Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Washington, D.C. (1972)MATH
3.
Zurück zum Zitat Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007)CrossRef Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007)CrossRef
4.
Zurück zum Zitat Anderson, D.F., Cotter, S.L.: Product-form stationary distributions for deficiency zero networks with non-mass action kinetics. Bull. Math. Biol. 78, 2390–2407 (2016)MathSciNetCrossRef Anderson, D.F., Cotter, S.L.: Product-form stationary distributions for deficiency zero networks with non-mass action kinetics. Bull. Math. Biol. 78, 2390–2407 (2016)MathSciNetCrossRef
5.
Zurück zum Zitat Anderson, D.F., Craciun, G., Kurtz, T.G.: Product-form stationary distributions for deficiency zero chemical reaction networks. Bull. Math. Biol. 72, 1947–1970 (2010)MathSciNetCrossRef Anderson, D.F., Craciun, G., Kurtz, T.G.: Product-form stationary distributions for deficiency zero chemical reaction networks. Bull. Math. Biol. 72, 1947–1970 (2010)MathSciNetCrossRef
6.
Zurück zum Zitat Bleris, L., Xie, Z., Glass, D., Adadey, A., Sontag, E., Benenson, Y.: Synthetic incoherent feedforward circuits show adaptation to the amount of their genetic template. Mol. Syst. Biol. 7, 519 (2011)CrossRef Bleris, L., Xie, Z., Glass, D., Adadey, A., Sontag, E., Benenson, Y.: Synthetic incoherent feedforward circuits show adaptation to the amount of their genetic template. Mol. Syst. Biol. 7, 519 (2011)CrossRef
7.
Zurück zum Zitat Bokes, P., King, J., Wood, A., Loose, M.: Multiscale stochastic modelling of gene expression. J. Math. Biol. 65, 493–520 (2012)MathSciNetCrossRef Bokes, P., King, J., Wood, A., Loose, M.: Multiscale stochastic modelling of gene expression. J. Math. Biol. 65, 493–520 (2012)MathSciNetCrossRef
9.
Zurück zum Zitat Bokes, P., King, J.R., Wood, A.T., Loose, M.: Exact and approximate distributions of protein and mRNA levels in the low-copy regime of gene expression. J. Math. Biol. 64, 829–854 (2012)MathSciNetCrossRef Bokes, P., King, J.R., Wood, A.T., Loose, M.: Exact and approximate distributions of protein and mRNA levels in the low-copy regime of gene expression. J. Math. Biol. 64, 829–854 (2012)MathSciNetCrossRef
10.
Zurück zum Zitat Bokes, P., Singh, A.: Gene expression noise is affected differentially by feedback in burst frequency and burst size. J. Math. Biol. 74, 1483–1509 (2017)MathSciNetCrossRef Bokes, P., Singh, A.: Gene expression noise is affected differentially by feedback in burst frequency and burst size. J. Math. Biol. 74, 1483–1509 (2017)MathSciNetCrossRef
11.
Zurück zum Zitat Bosia, C., Osella, M., Baroudi, M.E., Cora, D., Caselle, M.: Gene autoregulation via intronic microRNAs and its functions. BMC Syst. Biol. 6, 131 (2012)CrossRef Bosia, C., Osella, M., Baroudi, M.E., Cora, D., Caselle, M.: Gene autoregulation via intronic microRNAs and its functions. BMC Syst. Biol. 6, 131 (2012)CrossRef
12.
Zurück zum Zitat Bronstein, L., Koeppl, H.: A variational approach to moment-closure approximations for the kinetics of biomolecular reaction networks. J. Chem. Phys. 148, 014105 (2018)CrossRef Bronstein, L., Koeppl, H.: A variational approach to moment-closure approximations for the kinetics of biomolecular reaction networks. J. Chem. Phys. 148, 014105 (2018)CrossRef
13.
Zurück zum Zitat Cardelli, L., Kwiatkowska, M., Laurenti, L.: Stochastic analysis of chemical reaction networks using linear noise approximation. Biosystems 149, 26–33 (2016)CrossRef Cardelli, L., Kwiatkowska, M., Laurenti, L.: Stochastic analysis of chemical reaction networks using linear noise approximation. Biosystems 149, 26–33 (2016)CrossRef
15.
Zurück zum Zitat Feinberg, M.: Lectures on chemical reaction networks. Notes of lectures given at the Mathematics Research Center of the University of Wisconsin (1979) Feinberg, M.: Lectures on chemical reaction networks. Notes of lectures given at the Mathematics Research Center of the University of Wisconsin (1979)
16.
Zurück zum Zitat Ghusinga, K.R., Vargas-Garcia, C.A., Lamperski, A., Singh, A.: Exact lower and upper bounds on stationary moments in stochastic biochemical systems. Phys. Biol. 14, 04LT01 (2017)CrossRef Ghusinga, K.R., Vargas-Garcia, C.A., Lamperski, A., Singh, A.: Exact lower and upper bounds on stationary moments in stochastic biochemical systems. Phys. Biol. 14, 04LT01 (2017)CrossRef
17.
Zurück zum Zitat Gillespie, D.: A general method for numerically simulating stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)MathSciNetCrossRef Gillespie, D.: A general method for numerically simulating stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)MathSciNetCrossRef
18.
Zurück zum Zitat Herath, N., Del Vecchio, D.: Reduced linear noise approximation for biochemical reaction networks with time-scale separation: the stochastic tQSSA+. J. Chem. Phys. 148, 094108 (2018)CrossRef Herath, N., Del Vecchio, D.: Reduced linear noise approximation for biochemical reaction networks with time-scale separation: the stochastic tQSSA+. J. Chem. Phys. 148, 094108 (2018)CrossRef
19.
Zurück zum Zitat Innocentini, G.C., Forger, M., Radulescu, O., Antoneli, F.: Protein synthesis driven by dynamical stochastic transcription. Bull. Math. Biol. 78, 110–131 (2016)MathSciNetCrossRef Innocentini, G.C., Forger, M., Radulescu, O., Antoneli, F.: Protein synthesis driven by dynamical stochastic transcription. Bull. Math. Biol. 78, 110–131 (2016)MathSciNetCrossRef
20.
Zurück zum Zitat Innocentini, G.C., Guiziou, S., Bonnet, J., Radulescu, O.: Analytic framework for a stochastic binary biological switch. Phys. Rev. E 94, 062413 (2016)CrossRef Innocentini, G.C., Guiziou, S., Bonnet, J., Radulescu, O.: Analytic framework for a stochastic binary biological switch. Phys. Rev. E 94, 062413 (2016)CrossRef
21.
Zurück zum Zitat Johnson, N., Kotz, S., Kemp, A.: Univariate Discrete Distributions, 3rd edn. Wiley, Hoboken (2005)CrossRef Johnson, N., Kotz, S., Kemp, A.: Univariate Discrete Distributions, 3rd edn. Wiley, Hoboken (2005)CrossRef
22.
Zurück zum Zitat van Kampen, N.: Stochastic Processes in Physics and Chemistry. Elsevier, New York (2006)MATH van Kampen, N.: Stochastic Processes in Physics and Chemistry. Elsevier, New York (2006)MATH
23.
Zurück zum Zitat Kan, X., Lee, C.H., Othmer, H.G.: A multi-time-scale analysis of chemical reaction networks: II. Stochastic systems. J. Math. Biol. 73, 1081–1129 (2016)MathSciNetCrossRef Kan, X., Lee, C.H., Othmer, H.G.: A multi-time-scale analysis of chemical reaction networks: II. Stochastic systems. J. Math. Biol. 73, 1081–1129 (2016)MathSciNetCrossRef
24.
Zurück zum Zitat Kelly, F.P.: Reversibility and Stochastic Networks. Cambridge University Press, Cambridge (2011)MATH Kelly, F.P.: Reversibility and Stochastic Networks. Cambridge University Press, Cambridge (2011)MATH
25.
Zurück zum Zitat Kim, J.K., Josić, K., Bennett, M.R.: The validity of quasi-steady-state approximations in discrete stochastic simulations. Biophys. J. 107, 783–793 (2014)CrossRef Kim, J.K., Josić, K., Bennett, M.R.: The validity of quasi-steady-state approximations in discrete stochastic simulations. Biophys. J. 107, 783–793 (2014)CrossRef
26.
Zurück zum Zitat Kumar, N., Jia, T., Zarringhalam, K., Kulkarni, R.V.: Frequency modulation of stochastic gene expression bursts by strongly interacting small RNAs. Phys. Rev. E 94, 042419 (2016)CrossRef Kumar, N., Jia, T., Zarringhalam, K., Kulkarni, R.V.: Frequency modulation of stochastic gene expression bursts by strongly interacting small RNAs. Phys. Rev. E 94, 042419 (2016)CrossRef
27.
Zurück zum Zitat Kurtz, T.G.: The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys. 57, 2976–2978 (1972)CrossRef Kurtz, T.G.: The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys. 57, 2976–2978 (1972)CrossRef
28.
Zurück zum Zitat Lestas, I., Paulsson, J., Ross, N., Vinnicombe, G.: Noise in gene regulatory networks. IEEE Trans. Circuits-I 53, 189–200 (2008)MathSciNetMATH Lestas, I., Paulsson, J., Ross, N., Vinnicombe, G.: Noise in gene regulatory networks. IEEE Trans. Circuits-I 53, 189–200 (2008)MathSciNetMATH
29.
Zurück zum Zitat Li, X., Cassidy, J.J., Reinke, C.A., Fischboeck, S., Carthew, R.W.: A microRNA imparts robustness against environmental fluctuation during development. Cell 137, 273–282 (2009)CrossRef Li, X., Cassidy, J.J., Reinke, C.A., Fischboeck, S., Carthew, R.W.: A microRNA imparts robustness against environmental fluctuation during development. Cell 137, 273–282 (2009)CrossRef
30.
Zurück zum Zitat Maarleveld, T.R., Olivier, B.G., Bruggeman, F.J.: StochPy: a comprehensive, user-friendly tool for simulating stochastic biological processes. PLoS One 8, e79345 (2013)CrossRef Maarleveld, T.R., Olivier, B.G., Bruggeman, F.J.: StochPy: a comprehensive, user-friendly tool for simulating stochastic biological processes. PLoS One 8, e79345 (2013)CrossRef
31.
Zurück zum Zitat Mastny, E., Haseltine, E., Rawlings, J.: Two classes of quasi-steady-state model reductions for stochastic kinetics. J. Chem. Phys. 127, 094106 (2007)CrossRef Mastny, E., Haseltine, E., Rawlings, J.: Two classes of quasi-steady-state model reductions for stochastic kinetics. J. Chem. Phys. 127, 094106 (2007)CrossRef
32.
Zurück zum Zitat Nevozhay, D., Adams, R.M., Murphy, K.F., Josic, K., Balazsi, G.: Negative autoregulation linearizes the dose response and suppresses the heterogeneity of gene expression. Proc. Natl. Acad. Sci. U.S.A. 106, 5123–5128 (2009)CrossRef Nevozhay, D., Adams, R.M., Murphy, K.F., Josic, K., Balazsi, G.: Negative autoregulation linearizes the dose response and suppresses the heterogeneity of gene expression. Proc. Natl. Acad. Sci. U.S.A. 106, 5123–5128 (2009)CrossRef
33.
Zurück zum Zitat Osella, M., Bosia, C., Corá, D., Caselle, M.: The role of incoherent microRNA-mediated feedforward loops in noise buffering. PLoS Comput. Biol. 7, e1001101 (2011)CrossRef Osella, M., Bosia, C., Corá, D., Caselle, M.: The role of incoherent microRNA-mediated feedforward loops in noise buffering. PLoS Comput. Biol. 7, e1001101 (2011)CrossRef
34.
Zurück zum Zitat Paulsson, J.: Models of stochastic gene expression. Phys. Life Rev. 2, 157–175 (2005)CrossRef Paulsson, J.: Models of stochastic gene expression. Phys. Life Rev. 2, 157–175 (2005)CrossRef
35.
Zurück zum Zitat Platini, T., Jia, T., Kulkarni, R.V.: Regulation by small RNAs via coupled degradation: Mean-field and variational approaches. Phys. Rev. E 84, 021928 (2011)CrossRef Platini, T., Jia, T., Kulkarni, R.V.: Regulation by small RNAs via coupled degradation: Mean-field and variational approaches. Phys. Rev. E 84, 021928 (2011)CrossRef
36.
Zurück zum Zitat Popovic, N., Marr, C., Swain, P.S.: A geometric analysis of fast-slow models for stochastic gene expression. J. Math. Biol. 72, 87–122 (2016)MathSciNetCrossRef Popovic, N., Marr, C., Swain, P.S.: A geometric analysis of fast-slow models for stochastic gene expression. J. Math. Biol. 72, 87–122 (2016)MathSciNetCrossRef
37.
Zurück zum Zitat Schmiedel, J.M., et al.: MicroRNA control of protein expression noise. Science 348, 128–132 (2015)CrossRef Schmiedel, J.M., et al.: MicroRNA control of protein expression noise. Science 348, 128–132 (2015)CrossRef
38.
Zurück zum Zitat Singh, A.: Negative feedback through mRNA provides the best control of gene-expression noise. IEEE Trans. NanoBiosci. 10, 194–200 (2011)CrossRef Singh, A.: Negative feedback through mRNA provides the best control of gene-expression noise. IEEE Trans. NanoBiosci. 10, 194–200 (2011)CrossRef
39.
Zurück zum Zitat Singh, A., Bokes, P.: Consequences of mRNA transport on stochastic variability in protein levels. Biophys. J. 103, 1087–1096 (2012)CrossRef Singh, A., Bokes, P.: Consequences of mRNA transport on stochastic variability in protein levels. Biophys. J. 103, 1087–1096 (2012)CrossRef
40.
Zurück zum Zitat Singh, A., Vargas-Garcia, C.A., Karmakar, R.: Stochastic analysis and inference of a two-state genetic promoter model. In: Proceedings of the American Control Conference, pp. 4563–4568 (2013) Singh, A., Vargas-Garcia, C.A., Karmakar, R.: Stochastic analysis and inference of a two-state genetic promoter model. In: Proceedings of the American Control Conference, pp. 4563–4568 (2013)
41.
Zurück zum Zitat Singh, A., Grima, R.: The linear-noise approximation and moment-closure approximations for stochastic chemical kinetics. arXiv preprint arXiv:1711.07383 (2017) Singh, A., Grima, R.: The linear-noise approximation and moment-closure approximations for stochastic chemical kinetics. arXiv preprint arXiv:​1711.​07383 (2017)
42.
Zurück zum Zitat Singh, A., Hespanha, J.P.: Optimal feedback strength for noise suppression in autoregulatory gene networks. Biophys. J. 96, 4013–4023 (2009)CrossRef Singh, A., Hespanha, J.P.: Optimal feedback strength for noise suppression in autoregulatory gene networks. Biophys. J. 96, 4013–4023 (2009)CrossRef
43.
Zurück zum Zitat Soltani, M., Platini, T., Singh, A.: Stochastic analysis of an incoherent feedforward genetic motif. In: American Control Conference (ACC), pp. 406–411 (2016) Soltani, M., Platini, T., Singh, A.: Stochastic analysis of an incoherent feedforward genetic motif. In: American Control Conference (ACC), pp. 406–411 (2016)
44.
Zurück zum Zitat Srivastava, R., Haseltine, E.L., Mastny, E., Rawlings, J.B.: The stochastic quasi-steady-state assumption: reducing the model but not the noise. J. Chem. Phys. 134, 154109 (2011)CrossRef Srivastava, R., Haseltine, E.L., Mastny, E., Rawlings, J.B.: The stochastic quasi-steady-state assumption: reducing the model but not the noise. J. Chem. Phys. 134, 154109 (2011)CrossRef
45.
Zurück zum Zitat Stewart, A.J., Seymour, R.M., Pomiankowski, A., Reuter, M.: Under-dominance constrains the evolution of negative autoregulation in diploids. PLoS Comput. Biol. 9, e1002992 (2013)CrossRef Stewart, A.J., Seymour, R.M., Pomiankowski, A., Reuter, M.: Under-dominance constrains the evolution of negative autoregulation in diploids. PLoS Comput. Biol. 9, e1002992 (2013)CrossRef
46.
Zurück zum Zitat Strovas, T.J., Rosenberg, A.B., Kuypers, B.E., Muscat, R.A., Seelig, G.: MicroRNA-based single-gene circuits buffer protein synthesis rates against perturbations. ACS Synth. Biol. 3, 324–331 (2014)CrossRef Strovas, T.J., Rosenberg, A.B., Kuypers, B.E., Muscat, R.A., Seelig, G.: MicroRNA-based single-gene circuits buffer protein synthesis rates against perturbations. ACS Synth. Biol. 3, 324–331 (2014)CrossRef
48.
Zurück zum Zitat Voliotis, M., Bowsher, C.G.: The magnitude and colour of noise in genetic negative feedback systems. Nucleic Acids Res. 40, 7084–7095 (2012)CrossRef Voliotis, M., Bowsher, C.G.: The magnitude and colour of noise in genetic negative feedback systems. Nucleic Acids Res. 40, 7084–7095 (2012)CrossRef
49.
Zurück zum Zitat Yang, X., Wu, Y., Yuan, Z.: Characteristics of mRNA dynamics in a multi-on model of stochastic transcription with regulation. Chin. J. Phys. 55, 508–518 (2017)CrossRef Yang, X., Wu, Y., Yuan, Z.: Characteristics of mRNA dynamics in a multi-on model of stochastic transcription with regulation. Chin. J. Phys. 55, 508–518 (2017)CrossRef
Metadaten
Titel
Buffering Gene Expression Noise by MicroRNA Based Feedforward Regulation
verfasst von
Pavol Bokes
Michal Hojcka
Abhyudai Singh
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-99429-1_8