Skip to main content

2020 | OriginalPaper | Buchkapitel

Building a Competitive Associative Classifier

verfasst von : Nitakshi Sood, Osmar Zaiane

Erschienen in: Big Data Analytics and Knowledge Discovery

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the huge success of deep learning, other machine learning paradigms have had to take back seat. Yet other models, particularly rule-based, are more readable and explainable and can even be competitive when labelled data is not abundant. However, most of the existing rule-based classifiers suffer from the production of a large number of classification rules, affecting the model readability. This hampers the classification accuracy as noisy rules might not add any useful information for classification and also lead to longer classification time. In this study, we propose SigD2 which uses a novel, two-stage pruning strategy which prunes most of the noisy, redundant and uninteresting rules and makes the classification model more accurate and readable. To make SigDirect more competitive with the most prevalent but uninterpretable machine learning-based classifiers like neural networks and support vector machines, we propose bagging and boosting on the ensemble of the SigDirect classifier. The results of the proposed algorithms are quite promising and we are able to obtain a minimal set of statistically significant rules for classification without jeopardizing the classification accuracy. We use 15 UCI datasets and compare our approach with eight existing systems. The SigD2 and boosted SigDirect (ACboost) ensemble model outperform various state-of-the-art classifiers not only in terms of classification accuracy but also in terms of the number of rules.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Cohen, W.: Fast effective rule induction. In: International Conference on Machine Learning, pp. 115–123. Elsevier (1995) Cohen, W.: Fast effective rule induction. In: International Conference on Machine Learning, pp. 115–123. Elsevier (1995)
5.
Zurück zum Zitat Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNetMATH Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNetMATH
7.
Zurück zum Zitat Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: International Conference on Machine Learning, vol. 96, pp. 148–156 (1996) Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: International Conference on Machine Learning, vol. 96, pp. 148–156 (1996)
8.
9.
Zurück zum Zitat Li, J., Zaiane, O.R.: Exploiting statistically significant dependent rules for associative classification. Intell. Data Anal. 21(5), 1155–1172 (2017)CrossRef Li, J., Zaiane, O.R.: Exploiting statistically significant dependent rules for associative classification. Intell. Data Anal. 21(5), 1155–1172 (2017)CrossRef
10.
Zurück zum Zitat Li, W., Han, J. and Pei, J.: CMAR: accurate and efficient classification based on multiple class-association rules. In: International Conference on Data Mining, pp. 369–376 (2001) Li, W., Han, J. and Pei, J.: CMAR: accurate and efficient classification based on multiple class-association rules. In: International Conference on Data Mining, pp. 369–376 (2001)
11.
Zurück zum Zitat Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: International Conference on Knowledge Discovery and Data Mining (1998) Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: International Conference on Knowledge Discovery and Data Mining (1998)
12.
Zurück zum Zitat Quinlan, J.R.: C4.5: programs for machine learning. Mach. Learn. 16(3), 235–240 (1994) Quinlan, J.R.: C4.5: programs for machine learning. Mach. Learn. 16(3), 235–240 (1994)
13.
Zurück zum Zitat Sood, N., Bindra, L., Zaiane, O.: Bi-level associative classifier using automatic learning on rules. In: International Conference on Database and Expert Systems Applications (2020) Sood, N., Bindra, L., Zaiane, O.: Bi-level associative classifier using automatic learning on rules. In: International Conference on Database and Expert Systems Applications (2020)
14.
Zurück zum Zitat Yin, X., Han, J.: CPAR: classification based on predictive association rules. In: SIAM International Conference on Data Mining, pp. 331–335 (2003) Yin, X., Han, J.: CPAR: classification based on predictive association rules. In: SIAM International Conference on Data Mining, pp. 331–335 (2003)
15.
Zurück zum Zitat Zaïane, O.R., Antonie, M.L.: On pruning and tuning rules for associative classifiers. In: International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, pp. 966–973 (2005) Zaïane, O.R., Antonie, M.L.: On pruning and tuning rules for associative classifiers. In: International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, pp. 966–973 (2005)
Metadaten
Titel
Building a Competitive Associative Classifier
verfasst von
Nitakshi Sood
Osmar Zaiane
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-59065-9_18