Skip to main content
Erschienen in: International Journal of Machine Learning and Cybernetics 7/2023

04.02.2023 | Original Article

Building hierarchical class structures for extreme multi-class learning

verfasst von: Hongzhi Huang, Yu Wang, Qinghua Hu

Erschienen in: International Journal of Machine Learning and Cybernetics | Ausgabe 7/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Class hierarchical structures play a significant role in large and complex tasks of machine learning. Existing studies on the construction of such structures follow a two-stage strategy. The category similarities are first computed with a certain assumption, and the group partition algorithm is then performed with some hyper-parameters to control the shape of class hierarchy. Despite their effectiveness in many cases, these methods suffer from two problems: (1) optimizing the two-stage objective to obtain the structure is sub-optimal; (2) hyper-parameters make the search space too large to find the optimal structure efficiently. In this paper, we propose a unified and dynamic framework to address these problems, which can: (1) jointly optimize the category similarity and group partition; (2) obtain the class hierarchical structure dynamically without any hyper-parameters. The framework replaces the traditional category similarity with the sample similarity, and constrains samples from the same atomic category partitioned to the same super-category. We theoretically prove that, within our framework, the sample similarity is equivalent to the category similarity and can balance the partitions in terms of the number of samples. Further, we design a modularity-based partition optimization algorithm that can automatically determine the number of partitions on each level. Extensive experimental results on multiple image classification datasets show that the hierarchical structure constructed by the proposed method achieves better accuracy and efficiency compared to existing methods. Additionally, the hierarchy obtained by the proposed method can benefit long-tail learning scenarios due to the balanced partition on samples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Zhai J, Zhang S, Wang C (2017) The classification of imbalanced large data sets based on mapreduce and ensemble of elm classifiers. Int J Mach Learn Cybern 8(3):1009–1017CrossRef Zhai J, Zhang S, Wang C (2017) The classification of imbalanced large data sets based on mapreduce and ensemble of elm classifiers. Int J Mach Learn Cybern 8(3):1009–1017CrossRef
2.
Zurück zum Zitat Dabbu M, Karuppusamy L, Pulugu D, Vootla SR, Reddyvari VR (2022) Water atom search algorithm-based deep recurrent neural network for the big data classification based on spark architecture. Int J Mach Learn Cybern 13(8):2297–2312 Dabbu M, Karuppusamy L, Pulugu D, Vootla SR, Reddyvari VR (2022) Water atom search algorithm-based deep recurrent neural network for the big data classification based on spark architecture. Int J Mach Learn Cybern 13(8):2297–2312
3.
Zurück zum Zitat Pan L, Wang S, Ding Y, Zhao L, Song A (2022) A universal emotion recognition method based on feature priority evaluation and classifier reinforcement. Int J Mach Learn Cybern 13(10):3225–3237 Pan L, Wang S, Ding Y, Zhao L, Song A (2022) A universal emotion recognition method based on feature priority evaluation and classifier reinforcement. Int J Mach Learn Cybern 13(10):3225–3237
4.
Zurück zum Zitat Zheng Y, Fan J, Zhang J, Gao X (2017) Hierarchical learning of multi-task sparse metrics for large-scale image classification. Pattern Recogn 67:97–109CrossRef Zheng Y, Fan J, Zhang J, Gao X (2017) Hierarchical learning of multi-task sparse metrics for large-scale image classification. Pattern Recogn 67:97–109CrossRef
5.
Zurück zum Zitat Zhou Y, Hu Q, Wang Y (2018) Deep super-class learning for long-tail distributed image classification. Pattern Recogn 80:118–128CrossRef Zhou Y, Hu Q, Wang Y (2018) Deep super-class learning for long-tail distributed image classification. Pattern Recogn 80:118–128CrossRef
6.
Zurück zum Zitat Lin Y, Liu H, Zhao H, Hu Q, Zhu X, Wu X (2022) Hierarchical feature selection based on label distribution learning. IEEE Transact Knowledge Data Eng Lin Y, Liu H, Zhao H, Hu Q, Zhu X, Wu X (2022) Hierarchical feature selection based on label distribution learning. IEEE Transact Knowledge Data Eng
7.
Zurück zum Zitat Han S, Mao H, Dally WJ (2016) Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding. In: ICLR 2016 : International Conference on Learning Representations 2016 Han S, Mao H, Dally WJ (2016) Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding. In: ICLR 2016 : International Conference on Learning Representations 2016
9.
Zurück zum Zitat Tenenbaum JB, Kemp C, Griffiths TL, Goodman ND (2011) How to grow a mind: statistics, structure, and abstraction. Science 331(6022):1279–1285MathSciNetCrossRefMATH Tenenbaum JB, Kemp C, Griffiths TL, Goodman ND (2011) How to grow a mind: statistics, structure, and abstraction. Science 331(6022):1279–1285MathSciNetCrossRefMATH
10.
Zurück zum Zitat Lin Y, Hu Q, Liu J, Zhu X, Wu X (2021) Mulfe: multi-label learning via label-specific feature space ensemble. ACM Transact Knowledge Discovery Data (TKDD) 16(1):1–24 Lin Y, Hu Q, Liu J, Zhu X, Wu X (2021) Mulfe: multi-label learning via label-specific feature space ensemble. ACM Transact Knowledge Discovery Data (TKDD) 16(1):1–24
11.
Zurück zum Zitat Bellmund JL, Gärdenfors P, Moser EI, Doeller CF (2018) Navigating cognition: spatial codes for human thinking. Science 362(6415):6766CrossRef Bellmund JL, Gärdenfors P, Moser EI, Doeller CF (2018) Navigating cognition: spatial codes for human thinking. Science 362(6415):6766CrossRef
12.
Zurück zum Zitat Ye Q, Shi W, Qu K, He H, Zhuang W, Shen X (2021) Joint ran slicing and computation offloading for autonomous vehicular networks: a learning-assisted hierarchical approach. IEEE Open J Vehicular Technol 2:272–288CrossRef Ye Q, Shi W, Qu K, He H, Zhuang W, Shen X (2021) Joint ran slicing and computation offloading for autonomous vehicular networks: a learning-assisted hierarchical approach. IEEE Open J Vehicular Technol 2:272–288CrossRef
13.
Zurück zum Zitat Al-taezi M, Zhu P, Hu Q, Wang Y, Al-Badwi A (2021) Self-paced hierarchical metric learning (sphml). Int J Mach Learn Cybern 12(9):2529–2541CrossRef Al-taezi M, Zhu P, Hu Q, Wang Y, Al-Badwi A (2021) Self-paced hierarchical metric learning (sphml). Int J Mach Learn Cybern 12(9):2529–2541CrossRef
14.
Zurück zum Zitat Xu Z, Zhang B, Li D, Yue X (2022) Hierarchical multilabel classification by exploiting label correlations. Int J Mach Learn Cybern 13(1):115–131CrossRef Xu Z, Zhang B, Li D, Yue X (2022) Hierarchical multilabel classification by exploiting label correlations. Int J Mach Learn Cybern 13(1):115–131CrossRef
15.
Zurück zum Zitat Fu S, Wang G, Xu J (2021) hier2vec: interpretable multi-granular representation learning for hierarchy in social networks. Int J Mach Learn Cybern 12(9):2543–2557CrossRef Fu S, Wang G, Xu J (2021) hier2vec: interpretable multi-granular representation learning for hierarchy in social networks. Int J Mach Learn Cybern 12(9):2543–2557CrossRef
16.
Zurück zum Zitat Zhang X, Zhou Y, Tang X, Fan Y (2022) Three-way improved neighborhood entropies based on three-level granular structures. Int J Mach Learn Cybern 13(7):1861–1890 Zhang X, Zhou Y, Tang X, Fan Y (2022) Three-way improved neighborhood entropies based on three-level granular structures. Int J Mach Learn Cybern 13(7):1861–1890
17.
Zurück zum Zitat Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255
20.
Zurück zum Zitat Bengio S, Weston J, Grangier D (2010) Label embedding trees for large multi-class tasks. In: Advances in Neural Information Processing Systems 23, pp. 163–171 Bengio S, Weston J, Grangier D (2010) Label embedding trees for large multi-class tasks. In: Advances in Neural Information Processing Systems 23, pp. 163–171
21.
Zurück zum Zitat Liu Y, Dou Y, Jin R, Li R (2018) Visual confusion label tree for image classification. In: 2018 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 Liu Y, Dou Y, Jin R, Li R (2018) Visual confusion label tree for image classification. In: 2018 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6
23.
25.
Zurück zum Zitat Li L-J, Wang C, Lim Y, Blei DM, Fei-Fei L (2010) Building and using a semantivisual image hierarchy. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3336–3343 Li L-J, Wang C, Lim Y, Blei DM, Fei-Fei L (2010) Building and using a semantivisual image hierarchy. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3336–3343
26.
Zurück zum Zitat Naphade M, Smith JR, Tesic J, Chang S-F, Hsu W, Kennedy L, Hauptmann A, Curtis J (2006) Large-scale concept ontology for multimedia. IEEE Multimedia 13(3):86–91CrossRef Naphade M, Smith JR, Tesic J, Chang S-F, Hsu W, Kennedy L, Hauptmann A, Curtis J (2006) Large-scale concept ontology for multimedia. IEEE Multimedia 13(3):86–91CrossRef
27.
Zurück zum Zitat Sun M, Huang W, Savarese S (2013) Find the best path: An efficient and accurate classifier for image hierarchies. In: 2013 IEEE International Conference on Computer Vision, pp. 265–272 Sun M, Huang W, Savarese S (2013) Find the best path: An efficient and accurate classifier for image hierarchies. In: 2013 IEEE International Conference on Computer Vision, pp. 265–272
28.
Zurück zum Zitat Lei H, Mei K, Zheng N, Dong P, Zhou N, Fan J (2014) Learning group-based dictionaries for discriminative image representation. Pattern Recogn 47(2):899–913CrossRefMATH Lei H, Mei K, Zheng N, Dong P, Zhou N, Fan J (2014) Learning group-based dictionaries for discriminative image representation. Pattern Recogn 47(2):899–913CrossRefMATH
29.
Zurück zum Zitat Griffin G, Perona P (2008) Learning and using taxonomies for fast visual categorization. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 Griffin G, Perona P (2008) Learning and using taxonomies for fast visual categorization. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8
30.
Zurück zum Zitat Yan Z, Zhang H, Piramuthu R, Jagadeesh V, DeCoste D, Di W, Yu Y (2015) Hd-cnn: Hierarchical deep convolutional neural networks for large scale visual recognition. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 2740–2748 Yan Z, Zhang H, Piramuthu R, Jagadeesh V, DeCoste D, Di W, Yu Y (2015) Hd-cnn: Hierarchical deep convolutional neural networks for large scale visual recognition. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 2740–2748
31.
Zurück zum Zitat Deng J, Satheesh S, Berg AC, Li F (2011) Fast and balanced: Efficient label tree learning for large scale object recognition. In: Advances in Neural Information Processing Systems 24, pp. 567–575 Deng J, Satheesh S, Berg AC, Li F (2011) Fast and balanced: Efficient label tree learning for large scale object recognition. In: Advances in Neural Information Processing Systems 24, pp. 567–575
32.
Zurück zum Zitat Liu B, Sadeghi F, Tappen M, Shamir O, Liu C (2013) Probabilistic label trees for efficient large scale image classification. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 843–850 Liu B, Sadeghi F, Tappen M, Shamir O, Liu C (2013) Probabilistic label trees for efficient large scale image classification. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 843–850
33.
Zurück zum Zitat Fan J, Zhou N, Peng J, Gao L (2015) Hierarchical learning of tree classifiers for large-scale plant species identification. IEEE Trans Image Process 24(11):4172–4184MathSciNetCrossRefMATH Fan J, Zhou N, Peng J, Gao L (2015) Hierarchical learning of tree classifiers for large-scale plant species identification. IEEE Trans Image Process 24(11):4172–4184MathSciNetCrossRefMATH
34.
Zurück zum Zitat Fan J, Zhao T, Kuang Z, Zheng Y, Zhang J, Yu J, Peng J (2017) Hd-mtl: hierarchical deep multi-task learning for large-scale visual recognition. IEEE Trans Image Process 26(4):1923–1938MathSciNetCrossRefMATH Fan J, Zhao T, Kuang Z, Zheng Y, Zhang J, Yu J, Peng J (2017) Hd-mtl: hierarchical deep multi-task learning for large-scale visual recognition. IEEE Trans Image Process 26(4):1923–1938MathSciNetCrossRefMATH
35.
Zurück zum Zitat Qu Y, Lin L, Shen F, Lu C, Wu Y, Xie Y, Tao D (2017) Joint hierarchical category structure learning and large-scale image classification. IEEE Trans Image Process 26(9):4331–4346MathSciNetCrossRefMATH Qu Y, Lin L, Shen F, Lu C, Wu Y, Xie Y, Tao D (2017) Joint hierarchical category structure learning and large-scale image classification. IEEE Trans Image Process 26(9):4331–4346MathSciNetCrossRefMATH
37.
Zurück zum Zitat Zheng Y, Chen Q, Fan J, Gao X (2020) Hierarchical convolutional neural network via hierarchical cluster validity based visual tree learning. Neurocomputing 409:408–419CrossRef Zheng Y, Chen Q, Fan J, Gao X (2020) Hierarchical convolutional neural network via hierarchical cluster validity based visual tree learning. Neurocomputing 409:408–419CrossRef
38.
Zurück zum Zitat Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech 2008(10):10008CrossRefMATH Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech 2008(10):10008CrossRefMATH
39.
Zurück zum Zitat Newman MEJ (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69(6):066133CrossRef Newman MEJ (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69(6):066133CrossRef
40.
Zurück zum Zitat Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70(6):66111CrossRef Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70(6):66111CrossRef
41.
42.
Zurück zum Zitat Wang S, Siskind JM (2003) Image segmentation with ratio cut. IEEE Trans Pattern Anal Mach Intell 25(6):675–690CrossRef Wang S, Siskind JM (2003) Image segmentation with ratio cut. IEEE Trans Pattern Anal Mach Intell 25(6):675–690CrossRef
43.
Zurück zum Zitat Krizhevsky A (2009) Learning Multiple Layers of Features from Tiny Images. Master thesis Krizhevsky A (2009) Learning Multiple Layers of Features from Tiny Images. Master thesis
44.
Zurück zum Zitat Xiao J, Hays J, Ehinger KA, Oliva A, Torralba A (2010) Sun database: Large-scale scene recognition from abbey to zoo. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3485–3492 Xiao J, Hays J, Ehinger KA, Oliva A, Torralba A (2010) Sun database: Large-scale scene recognition from abbey to zoo. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3485–3492
45.
Zurück zum Zitat Pouransari H, Ghili S (2014) Tiny imagenet visual recognition challenge. CS 231N Pouransari H, Ghili S (2014) Tiny imagenet visual recognition challenge. CS 231N
46.
Zurück zum Zitat Cui Y, Jia M, Lin T-Y, Song Y, Belongie S (2019) Class-balanced loss based on effective number of samples. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9268–9277 Cui Y, Jia M, Lin T-Y, Song Y, Belongie S (2019) Class-balanced loss based on effective number of samples. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9268–9277
47.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778
48.
Zurück zum Zitat Clauset A, Moore C, Newman MEJ (2008) Hierarchical structure and the prediction of missing links in networks. Nature 453(7191):98–101CrossRef Clauset A, Moore C, Newman MEJ (2008) Hierarchical structure and the prediction of missing links in networks. Nature 453(7191):98–101CrossRef
49.
Zurück zum Zitat Wang Y, Liu R, Lin D, Chen D, Li P, Hu Q, Chen CLP (2021) Coarse-to-fine: Progressive knowledge transfer-based multitask convolutional neural network for intelligent large-scale fault diagnosis. IEEE Transactions on Neural Networks and Learning Systems, 1–14. https://doi.org/10.1109/TNNLS.2021.3100928 Wang Y, Liu R, Lin D, Chen D, Li P, Hu Q, Chen CLP (2021) Coarse-to-fine: Progressive knowledge transfer-based multitask convolutional neural network for intelligent large-scale fault diagnosis. IEEE Transactions on Neural Networks and Learning Systems, 1–14. https://​doi.​org/​10.​1109/​TNNLS.​2021.​3100928
50.
Zurück zum Zitat Wu A, Han Y, Zhu L, Yang Y (2021) Instance-invariant domain adaptive object detection via progressive disentanglement. IEEE Trans Pattern Anal Mach Intell 44(8):4178–4193 Wu A, Han Y, Zhu L, Yang Y (2021) Instance-invariant domain adaptive object detection via progressive disentanglement. IEEE Trans Pattern Anal Mach Intell 44(8):4178–4193
51.
Zurück zum Zitat Wu A, Zhao S, Deng C, Liu W (2021) Generalized and discriminative few-shot object detection via svd-dictionary enhancement. Adv Neural Inf Process Syst 34:6353–6364 Wu A, Zhao S, Deng C, Liu W (2021) Generalized and discriminative few-shot object detection via svd-dictionary enhancement. Adv Neural Inf Process Syst 34:6353–6364
Metadaten
Titel
Building hierarchical class structures for extreme multi-class learning
verfasst von
Hongzhi Huang
Yu Wang
Qinghua Hu
Publikationsdatum
04.02.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Machine Learning and Cybernetics / Ausgabe 7/2023
Print ISSN: 1868-8071
Elektronische ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-023-01783-z

Weitere Artikel der Ausgabe 7/2023

International Journal of Machine Learning and Cybernetics 7/2023 Zur Ausgabe

Neuer Inhalt