Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

04.07.2019 | Original Article | Ausgabe 9/2019

Medical & Biological Engineering & Computing 9/2019

Bypassing the volume conduction effect by multilayer neural network for effective connectivity estimation

Zeitschrift:
Medical & Biological Engineering & Computing > Ausgabe 9/2019
Autoren:
Nasibeh Talebi, Ali Motie Nasrabadi, Iman Mohammad-Rezazadeh
Wichtige Hinweise

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Differentiation of real interactions between different brain regions from spurious ones has been a challenge in neuroimaging researches. While using electroencephalographic data, those spurious interactions are mostly caused by the volume conduction (VC) effect between the recording sites. In this study, we address the problem by jointly modeling the causal relationships among brain regions and the mixing effects of volume conduction. The VC effect is formulated with a time-invariant linear equation, and the causal relationships between the brain regions are modeled with a nonlinear multivariate autoregressive process. These two models are simultaneously implemented by a multilayer neural network. The internal hidden layers represent the interactions among the regions, while the external layers are devoted for the relationship between the source activities and observed EEG measurements at the scalp. The causal interactions are estimated by the causality coefficient measure, which is based on the information (weights and parameters) embedded in the network. The proposed method is verified using various simulated data. It is then applied to the real EEG signals collected from a memory retrieval test. The results showed that the method is able to eliminate the volume conduction interferences and consequently leads to higher accuracy in identification of true causal interactions.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 9/2019

Medical & Biological Engineering & Computing 9/2019 Zur Ausgabe

Premium Partner

    Bildnachweise