Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2017

04.05.2017

Calculation of Crystallographic Texture of BCC Steels During Cold Rolling

verfasst von: Arpan Das

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

BCC alloys commonly tend to develop strong fibre textures and often represent as isointensity diagrams in φ 1 sections or by fibre diagrams. Alpha fibre in bcc steels is generally characterised by 〈110〉 crystallographic axis parallel to the rolling direction. The objective of present research is to correlate carbon content, carbide dispersion, rolling reduction, Euler angles (ϕ) (when φ 1 = 0° and φ 2 = 45° along alpha fibre) and the resulting alpha fibre texture orientation intensity. In the present research, Bayesian neural computation has been employed to correlate these and compare with the existing feed-forward neural network model comprehensively. Excellent match to the measured texture data within the bounding box of texture training data set has been already predicted through the feed-forward neural network model by other researchers. Feed-forward neural network prediction outside the bounds of training texture data showed deviations from the expected values. Currently, Bayesian computation has been similarly applied to confirm that the predictions are reasonable in the context of basic metallurgical principles, and matched better outside the bounds of training texture data set than the reported feed-forward neural network. Bayesian computation puts error bars on predicted values and allows significance of each individual parameters to be estimated. Additionally, it is also possible by Bayesian computation to estimate the isolated influence of particular variable such as carbon concentration, which exactly cannot in practice be varied independently. This shows the ability of the Bayesian neural network to examine the new phenomenon in situations where the data cannot be accessed through experiments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G.J. Baczynski, J.J. Jonas, and L.E. Collins, The Influence of Rolling Practice on Notch Toughness and Texture Development in High-Strength Linepipe, Metall. Mater. Trans. A, 1999, 30(12), p 3045–3054CrossRef G.J. Baczynski, J.J. Jonas, and L.E. Collins, The Influence of Rolling Practice on Notch Toughness and Texture Development in High-Strength Linepipe, Metall. Mater. Trans. A, 1999, 30(12), p 3045–3054CrossRef
2.
Zurück zum Zitat R.K. Ray and J.J. Jonas, Transformation Textures in Steels, Int. Mater. Rev., 1990, 35(1), p 1–36CrossRef R.K. Ray and J.J. Jonas, Transformation Textures in Steels, Int. Mater. Rev., 1990, 35(1), p 1–36CrossRef
3.
Zurück zum Zitat H. Inagaki, Fundamental Aspect of Texture Formation in Low Carbon Steel, ISIJ Int., 1994, 34(4), p 313–321CrossRef H. Inagaki, Fundamental Aspect of Texture Formation in Low Carbon Steel, ISIJ Int., 1994, 34(4), p 313–321CrossRef
4.
Zurück zum Zitat A. Haldar, S. Suwas, and D. Bhattacharjee, Texture in Steels, Springer, New York, NY, 2009, p 185–205CrossRef A. Haldar, S. Suwas, and D. Bhattacharjee, Texture in Steels, Springer, New York, NY, 2009, p 185–205CrossRef
5.
Zurück zum Zitat I. Samajdar, B. Verlinden, and P. Van Houtte, Developments in Macro and Micro Texture During Plane Strain Channel Die Compression of IF Steel, ISIJ Int., 1998, 38(7), p 759–765CrossRef I. Samajdar, B. Verlinden, and P. Van Houtte, Developments in Macro and Micro Texture During Plane Strain Channel Die Compression of IF Steel, ISIJ Int., 1998, 38(7), p 759–765CrossRef
6.
Zurück zum Zitat S.I. Wright and D.P. Field, Recent Studies of Local Texture and Its Influence on Failure, Mater. Sci. Eng. A, 1998, 257(1), p 165–170CrossRef S.I. Wright and D.P. Field, Recent Studies of Local Texture and Its Influence on Failure, Mater. Sci. Eng. A, 1998, 257(1), p 165–170CrossRef
7.
Zurück zum Zitat R. Jamaati, M.R. Toroghinejad, M. Hoseini, and J.A. Szpunar, Development of Texture During ARB in Metal Matrix Composite, Mater. Sci. Technol., 2012, 28(4), p 406–410CrossRef R. Jamaati, M.R. Toroghinejad, M. Hoseini, and J.A. Szpunar, Development of Texture During ARB in Metal Matrix Composite, Mater. Sci. Technol., 2012, 28(4), p 406–410CrossRef
8.
Zurück zum Zitat R. Song, D. Ponge, D. Raabe, and R. Kaspar, Microstructure and Crystallographic Texture of an Ultrafine Grained C-Mn Steel and Their Evolution During Warm Deformation and Annealing, Acta Mater., 2005, 53(3), p 845–858CrossRef R. Song, D. Ponge, D. Raabe, and R. Kaspar, Microstructure and Crystallographic Texture of an Ultrafine Grained C-Mn Steel and Their Evolution During Warm Deformation and Annealing, Acta Mater., 2005, 53(3), p 845–858CrossRef
9.
Zurück zum Zitat M.S. Joo, D.W. Suh, J.H. Bae, N.S. Mourino, R. Petrov, L.A.I. Kestens, and H.K.D.H. Bhadeshia, Experiments to Separate the Effect of Texture on Anisotropy of Pipeline Steel, Mater. Sci. Eng. A, 2012, 556, p 601–606CrossRef M.S. Joo, D.W. Suh, J.H. Bae, N.S. Mourino, R. Petrov, L.A.I. Kestens, and H.K.D.H. Bhadeshia, Experiments to Separate the Effect of Texture on Anisotropy of Pipeline Steel, Mater. Sci. Eng. A, 2012, 556, p 601–606CrossRef
10.
Zurück zum Zitat S.J. Kim, S.H. Kim, A.D. Rollett, K.H. Oh, and H.N. Han, Microtexture Development During Equibiaxial Tensile Deformation in Monolithic and Dual Phase Steels, Acta Mater., 2011, 59(14), p 5462–5471CrossRef S.J. Kim, S.H. Kim, A.D. Rollett, K.H. Oh, and H.N. Han, Microtexture Development During Equibiaxial Tensile Deformation in Monolithic and Dual Phase Steels, Acta Mater., 2011, 59(14), p 5462–5471CrossRef
11.
Zurück zum Zitat A.D. Rollett, Crystallographic Texture Change During Grain Growth, JOM, 2004, 56(4), p 63–68CrossRef A.D. Rollett, Crystallographic Texture Change During Grain Growth, JOM, 2004, 56(4), p 63–68CrossRef
12.
Zurück zum Zitat O. Engler, C.N. Tomé, and M.Y. Huh, A Study of Through-Thickness Texture Gradients in Rolled Sheets, Metall. Mater. Trans. A, 2000, 31(9), p 2299–2315CrossRef O. Engler, C.N. Tomé, and M.Y. Huh, A Study of Through-Thickness Texture Gradients in Rolled Sheets, Metall. Mater. Trans. A, 2000, 31(9), p 2299–2315CrossRef
13.
Zurück zum Zitat S. Nafisi, M.A. Arafin, L. Collins, and J. Szpunar, Texture and Mechanical Properties of API, X100 Steel Manufactured Under Various Thermomechanical Cycles, Mater. Sci. Eng. A, 2012, 531, p 2–11CrossRef S. Nafisi, M.A. Arafin, L. Collins, and J. Szpunar, Texture and Mechanical Properties of API, X100 Steel Manufactured Under Various Thermomechanical Cycles, Mater. Sci. Eng. A, 2012, 531, p 2–11CrossRef
14.
Zurück zum Zitat M. Masoumi, L.F.G. Herculano, and H.F.G. de Abreu, Study of Texture and Microstructure Evaluation of Steel API, 5L X70 Under Various Thermomechanical Cycles, Mater. Sci. Eng. A, 2015, 639, p 550–558CrossRef M. Masoumi, L.F.G. Herculano, and H.F.G. de Abreu, Study of Texture and Microstructure Evaluation of Steel API, 5L X70 Under Various Thermomechanical Cycles, Mater. Sci. Eng. A, 2015, 639, p 550–558CrossRef
15.
Zurück zum Zitat C.L. Xie and E. Nakamachi, Investigations of the Formability of BCC Steel Sheets by Using Crystalline Plasticity Finite Element Analysis, Mater. Des., 2002, 23(1), p 59–68CrossRef C.L. Xie and E. Nakamachi, Investigations of the Formability of BCC Steel Sheets by Using Crystalline Plasticity Finite Element Analysis, Mater. Des., 2002, 23(1), p 59–68CrossRef
16.
Zurück zum Zitat P.J. Hurley, B.C. Muddle, and P.D. Hodgson, Microstructure and Microtexture of Ultrafine Ferrite Formed in 0.1% C Steel Using New Strip Rolling process, Mater. Sci. Technol., 2000, 16(11-12), p 1376–1379CrossRef P.J. Hurley, B.C. Muddle, and P.D. Hodgson, Microstructure and Microtexture of Ultrafine Ferrite Formed in 0.1% C Steel Using New Strip Rolling process, Mater. Sci. Technol., 2000, 16(11-12), p 1376–1379CrossRef
17.
Zurück zum Zitat P. Van Houtte, L. Delannay, and I. Samajdar, Quantitative Prediction of Cold Rolling Textures in Low-Carbon Steel by Means of the LAMEL Model, Texture Stress Microstruct., 1999, 31(3), p 109–149CrossRef P. Van Houtte, L. Delannay, and I. Samajdar, Quantitative Prediction of Cold Rolling Textures in Low-Carbon Steel by Means of the LAMEL Model, Texture Stress Microstruct., 1999, 31(3), p 109–149CrossRef
18.
Zurück zum Zitat J.H. Cho, A.D. Rollett, and K.H. Oh, Determination of Volume Fractions of Texture Components with Standard Distributions in Euler Space, Metall. Mater. Trans. A, 2004, 35(3), p 1075–1086CrossRef J.H. Cho, A.D. Rollett, and K.H. Oh, Determination of Volume Fractions of Texture Components with Standard Distributions in Euler Space, Metall. Mater. Trans. A, 2004, 35(3), p 1075–1086CrossRef
19.
Zurück zum Zitat P. Blandford and J.A. Szpunar, Development of Methods for On-line Texture Analysis, J. Nondestr. Eval., 1993, 12(1), p 21–26CrossRef P. Blandford and J.A. Szpunar, Development of Methods for On-line Texture Analysis, J. Nondestr. Eval., 1993, 12(1), p 21–26CrossRef
20.
Zurück zum Zitat P.H. Lequeu and J.J. Jonas, Modeling of the Plastic Anisotropy of Textured Sheet, Metall. Trans. A, 1988, 19(1), p 105–120CrossRef P.H. Lequeu and J.J. Jonas, Modeling of the Plastic Anisotropy of Textured Sheet, Metall. Trans. A, 1988, 19(1), p 105–120CrossRef
21.
Zurück zum Zitat P.H. Chapellier, R.K. Ray, and J.J. Jonas, Prediction of Transformation Textures in Steels, Acta Metall. Mater., 1990, 38(8), p 1475–1490CrossRef P.H. Chapellier, R.K. Ray, and J.J. Jonas, Prediction of Transformation Textures in Steels, Acta Metall. Mater., 1990, 38(8), p 1475–1490CrossRef
22.
Zurück zum Zitat J. Savoie and J.J. Jonas, Simulation of the Deformation Textures Induced by Deep Drawing in Extra Low Carbon Steel Sheets, Acta Metall. Mater., 1994, 42(12), p 4101–4116CrossRef J. Savoie and J.J. Jonas, Simulation of the Deformation Textures Induced by Deep Drawing in Extra Low Carbon Steel Sheets, Acta Metall. Mater., 1994, 42(12), p 4101–4116CrossRef
23.
Zurück zum Zitat A. Brahme, M. Winning, and D. Raabe, Prediction of Cold Rolling Texture of Steels Using an Artificial Neural Network, Comput. Mater. Sci., 2009, 46, p 800–804CrossRef A. Brahme, M. Winning, and D. Raabe, Prediction of Cold Rolling Texture of Steels Using an Artificial Neural Network, Comput. Mater. Sci., 2009, 46, p 800–804CrossRef
24.
Zurück zum Zitat R.K. Ray, J.J. Jonas, M.P. Butrón-Guillén, and J. Savoie, Transformation Textures in Steels, ISIJ Int., 1994, 34(12), p 927–942CrossRef R.K. Ray, J.J. Jonas, M.P. Butrón-Guillén, and J. Savoie, Transformation Textures in Steels, ISIJ Int., 1994, 34(12), p 927–942CrossRef
25.
Zurück zum Zitat B. Hutchinson, Deformation Microstructures and Textures in Steels, Philos. Trans. R. Soc. Lond. A, 1999, 357, p 1471–1485CrossRef B. Hutchinson, Deformation Microstructures and Textures in Steels, Philos. Trans. R. Soc. Lond. A, 1999, 357, p 1471–1485CrossRef
26.
Zurück zum Zitat A. Rollett, F.J. Humphreys, G.S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Amsterdam, 2004 A. Rollett, F.J. Humphreys, G.S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Amsterdam, 2004
27.
Zurück zum Zitat H.M. Otte, The Formation of Stacking Faults in Austenite and Its Relation to Martensite, Acta Metall., 1957, 5(11), p 614–627CrossRef H.M. Otte, The Formation of Stacking Faults in Austenite and Its Relation to Martensite, Acta Metall., 1957, 5(11), p 614–627CrossRef
28.
Zurück zum Zitat J. Keichel, J. Foct, and G. Gottstein, Deformation and Annealing Behavior of Nitrogen Alloyed Duplex Stainless Steels. Part I: Rolling, ISIJ Int., 2003, 43(11), p 1781–1787CrossRef J. Keichel, J. Foct, and G. Gottstein, Deformation and Annealing Behavior of Nitrogen Alloyed Duplex Stainless Steels. Part I: Rolling, ISIJ Int., 2003, 43(11), p 1781–1787CrossRef
29.
Zurück zum Zitat A. Das, Revisiting Stacking Fault Energy of Steels, Metall. Mater. Trans. A, 2016, 47(2), p 748–768CrossRef A. Das, Revisiting Stacking Fault Energy of Steels, Metall. Mater. Trans. A, 2016, 47(2), p 748–768CrossRef
30.
Zurück zum Zitat A. Bodin, J. Sietsman, and S. Van Der Zwaag, Texture and Microstructure Development During Intercritical Rolling of Low-Carbon Steels, Metall. Mater. Trans. A, 2002, 33(6), p 1589–1603CrossRef A. Bodin, J. Sietsman, and S. Van Der Zwaag, Texture and Microstructure Development During Intercritical Rolling of Low-Carbon Steels, Metall. Mater. Trans. A, 2002, 33(6), p 1589–1603CrossRef
31.
Zurück zum Zitat Y. Shingaki, M. Takashima, and Y. Hayakawa, Influence of Carbon Content and Rolling Temperature on Rolling Texture in 3 Pct Si Steel, Metall. Mater. Trans. A, 2017, 48(1), p 551–560CrossRef Y. Shingaki, M. Takashima, and Y. Hayakawa, Influence of Carbon Content and Rolling Temperature on Rolling Texture in 3 Pct Si Steel, Metall. Mater. Trans. A, 2017, 48(1), p 551–560CrossRef
32.
Zurück zum Zitat L.S. Tóth, J.J. Jonas, D. Daniel, and R.K. Ray, Development of Ferrite Rolling Textures in Low- and Extra Low-Carbon Steels, Metall. Trans. A, 1990, 21(11), p 2985–3000CrossRef L.S. Tóth, J.J. Jonas, D. Daniel, and R.K. Ray, Development of Ferrite Rolling Textures in Low- and Extra Low-Carbon Steels, Metall. Trans. A, 1990, 21(11), p 2985–3000CrossRef
33.
Zurück zum Zitat M. Eskandari, M.A. Mohtadi-Bonab, and J.A. Szpunar, Evolution of the Microstructure and Texture of X70 Pipeline Steel During Cold-Rolling and Annealing Treatments, Mater. Des., 2016, 90, p 618–627CrossRef M. Eskandari, M.A. Mohtadi-Bonab, and J.A. Szpunar, Evolution of the Microstructure and Texture of X70 Pipeline Steel During Cold-Rolling and Annealing Treatments, Mater. Des., 2016, 90, p 618–627CrossRef
34.
Zurück zum Zitat F. Yin, T. Hanamura, T. Inoue, and K. Nagai, Fiber Texture and Substructural Features in the Caliber-Rolled Low-Carbon Steels, Metall. Mater. Trans. A, 2004, 35(2), p 665–677CrossRef F. Yin, T. Hanamura, T. Inoue, and K. Nagai, Fiber Texture and Substructural Features in the Caliber-Rolled Low-Carbon Steels, Metall. Mater. Trans. A, 2004, 35(2), p 665–677CrossRef
35.
Zurück zum Zitat B. Hutchinson and D. Artymowicz, Mechanisms and Modelling of Microstructure/TEXTURE Evolution in Interstitial-Free Steel Sheets, ISIJ Int., 2001, 41(6), p 533–541CrossRef B. Hutchinson and D. Artymowicz, Mechanisms and Modelling of Microstructure/TEXTURE Evolution in Interstitial-Free Steel Sheets, ISIJ Int., 2001, 41(6), p 533–541CrossRef
36.
Zurück zum Zitat S.W. Cheong, E.J. Hilinski, and A.D. Rollett, Effect of Temper Rolling on Texture Formation in a Low Loss Cold-Rolled Magnetic Lamination Steel, Metall. Mater. Trans. A, 2003, 34(6), p 1311–1319CrossRef S.W. Cheong, E.J. Hilinski, and A.D. Rollett, Effect of Temper Rolling on Texture Formation in a Low Loss Cold-Rolled Magnetic Lamination Steel, Metall. Mater. Trans. A, 2003, 34(6), p 1311–1319CrossRef
37.
Zurück zum Zitat J. Keichel, J. Foct, and G. Gottstein, Deformation and Annealing Behavior of Nitrogen Alloyed Duplex Stainless Steels. Part I: Rolling, ISIJ Int., 2003, 43(11), p 1781–1787CrossRef J. Keichel, J. Foct, and G. Gottstein, Deformation and Annealing Behavior of Nitrogen Alloyed Duplex Stainless Steels. Part I: Rolling, ISIJ Int., 2003, 43(11), p 1781–1787CrossRef
38.
Zurück zum Zitat S. Kundu and H.K.D.H. Bhadeshia, Transformation Texture in Deformed Stainless Steel, Scr. Mater., 2006, 55(9), p 779–781CrossRef S. Kundu and H.K.D.H. Bhadeshia, Transformation Texture in Deformed Stainless Steel, Scr. Mater., 2006, 55(9), p 779–781CrossRef
39.
Zurück zum Zitat S. Satoh, T. Obara, and K. Tsunoyama, Effect of Precipitate Dispersion on Recrystallization Texture of Niobium-Added Extra-Low Carbon Cold-Rolled Steel Sheet, Trans. Iron Steel Inst. Jpn., 1986, 26(8), p 737–744CrossRef S. Satoh, T. Obara, and K. Tsunoyama, Effect of Precipitate Dispersion on Recrystallization Texture of Niobium-Added Extra-Low Carbon Cold-Rolled Steel Sheet, Trans. Iron Steel Inst. Jpn., 1986, 26(8), p 737–744CrossRef
40.
Zurück zum Zitat W.B. Hutchinson, Practical Aspects of Texture Control in Low Carbon Steels, Materials Science Forum, Vol 157, Trans Tech Publications, 1994, p 1917–1928 W.B. Hutchinson, Practical Aspects of Texture Control in Low Carbon Steels, Materials Science Forum, Vol 157, Trans Tech Publications, 1994, p 1917–1928
41.
Zurück zum Zitat C. Klinkenberg, D. Raabe, and K. Lücke, Influence of Volume Fraction and Dispersion Rate of Grain-Boundary Cementite on the Cold-Rolling Textures of Low-Carbon Steel, Steel Res. Int., 1992, 63(6), p 263–269CrossRef C. Klinkenberg, D. Raabe, and K. Lücke, Influence of Volume Fraction and Dispersion Rate of Grain-Boundary Cementite on the Cold-Rolling Textures of Low-Carbon Steel, Steel Res. Int., 1992, 63(6), p 263–269CrossRef
42.
Zurück zum Zitat H. Mecking and G. Gottstein, Recrystallization of Metallic Materials, Dr. Riederer-Verlag, Stuttgart, 1978, p 170 H. Mecking and G. Gottstein, Recrystallization of Metallic Materials, Dr. Riederer-Verlag, Stuttgart, 1978, p 170
43.
Zurück zum Zitat C. Klinkenberg, D. Raabe, and K. Lücke, Effects of Volume Fraction and Dispersion Rate of Grain Boundary Cementite on Annealing Textures of Low Carbon Steel, Scr. Met., 1992, 26, p 1137–1141CrossRef C. Klinkenberg, D. Raabe, and K. Lücke, Effects of Volume Fraction and Dispersion Rate of Grain Boundary Cementite on Annealing Textures of Low Carbon Steel, Scr. Met., 1992, 26, p 1137–1141CrossRef
44.
Zurück zum Zitat M. Konishi, T. Obara, and T. Tanaka, Effect of Heat Treatment Prior to Cold Rolling on the Recrystallization Texture in Iron-Carbon Single Crystals, Tetsu-to-Hagané, 1984, 70(15), p 1833–1840CrossRef M. Konishi, T. Obara, and T. Tanaka, Effect of Heat Treatment Prior to Cold Rolling on the Recrystallization Texture in Iron-Carbon Single Crystals, Tetsu-to-Hagané, 1984, 70(15), p 1833–1840CrossRef
45.
Zurück zum Zitat D. Daniel, J. Savoie, and J.J. Jonas, Textures Induced by Tension and Deep Drawing in Low Carbon and Extra Low Carbon Steel Sheets, Acta Metall. Mater., 1993, 41(6), p 1905–1920CrossRef D. Daniel, J. Savoie, and J.J. Jonas, Textures Induced by Tension and Deep Drawing in Low Carbon and Extra Low Carbon Steel Sheets, Acta Metall. Mater., 1993, 41(6), p 1905–1920CrossRef
46.
Zurück zum Zitat W. Dabrowski, J. Karp, and H.J. Bunge, Development of Texture in Low Carbon Al-Killed Sheet Steels After Uniaxial Tensile Deformation, Deep Drawing and Stretching, Steel Res. Int., 1982, 53(9), p 361–368 W. Dabrowski, J. Karp, and H.J. Bunge, Development of Texture in Low Carbon Al-Killed Sheet Steels After Uniaxial Tensile Deformation, Deep Drawing and Stretching, Steel Res. Int., 1982, 53(9), p 361–368
47.
Zurück zum Zitat M. Nezakat, H. Akhiani, S.M. Sabet, and J. Szpunar, Electron Backscatter and X-ray Diffraction Studies on the Deformation and Annealing Textures of Austenitic Stainless Steel 310S, Mater. Charact., 2017, 123, p 115–127CrossRef M. Nezakat, H. Akhiani, S.M. Sabet, and J. Szpunar, Electron Backscatter and X-ray Diffraction Studies on the Deformation and Annealing Textures of Austenitic Stainless Steel 310S, Mater. Charact., 2017, 123, p 115–127CrossRef
48.
Zurück zum Zitat D. Raabe and K. Lücke, Annealing Textures of bcc Metals, Scr. Metall. Mater., 1992, 27(11), p 1533–1538CrossRef D. Raabe and K. Lücke, Annealing Textures of bcc Metals, Scr. Metall. Mater., 1992, 27(11), p 1533–1538CrossRef
49.
Zurück zum Zitat D. Raabe and K. Lücke, Texture and Microstructure of Hot Rolled Steel, Scr. Metall. Mater., 1992, 26(8), p 1221–1226CrossRef D. Raabe and K. Lücke, Texture and Microstructure of Hot Rolled Steel, Scr. Metall. Mater., 1992, 26(8), p 1221–1226CrossRef
50.
Zurück zum Zitat D. Raabe and K. Lücke, Textures of Ferritic Stainless Steels, Mater. Sci. Technol., 1993, 9(4), p 302–312CrossRef D. Raabe and K. Lücke, Textures of Ferritic Stainless Steels, Mater. Sci. Technol., 1993, 9(4), p 302–312CrossRef
51.
Zurück zum Zitat S. Hasani, M. Shamanian, A. Shafyei, P. Behjati, M. Nezakat, M. Fathi-Moghaddam, and J.A. Szpunar, Influence of Annealing Treatment on Micro/Macro-Texture and Texture Dependent Magnetic Properties in Cold Rolled FeCo-7.15 V Alloy, J. Magn. Magn. Mater., 2015, 378, p 253–260CrossRef S. Hasani, M. Shamanian, A. Shafyei, P. Behjati, M. Nezakat, M. Fathi-Moghaddam, and J.A. Szpunar, Influence of Annealing Treatment on Micro/Macro-Texture and Texture Dependent Magnetic Properties in Cold Rolled FeCo-7.15 V Alloy, J. Magn. Magn. Mater., 2015, 378, p 253–260CrossRef
52.
Zurück zum Zitat Z. Ahmad, M. Farooque, A.U. Haq, and A.Q. Khan, Texture Development in Dual-Phase Cold-Rolled 18 pct Ni Maraging Steel, Metall. Mater. Trans. A, 1997, 28(12), p 2459–2465CrossRef Z. Ahmad, M. Farooque, A.U. Haq, and A.Q. Khan, Texture Development in Dual-Phase Cold-Rolled 18 pct Ni Maraging Steel, Metall. Mater. Trans. A, 1997, 28(12), p 2459–2465CrossRef
53.
Zurück zum Zitat P. Van Houtte, On the Equivalence of the Relaxed Taylor Theory and the Bishop-Hill Theory for Partially Constrained Plastic Deformation of Crystals, Mater. Sci. Eng., 1982, 55, p 69–77CrossRef P. Van Houtte, On the Equivalence of the Relaxed Taylor Theory and the Bishop-Hill Theory for Partially Constrained Plastic Deformation of Crystals, Mater. Sci. Eng., 1982, 55, p 69–77CrossRef
54.
Zurück zum Zitat D. Raabe, Simulation of Rolling Textures of bcc Metals Considering Grain Interactions and Crystallographic Slip on {110}, {112} and {123} Planes, Mater. Sci. Eng. A, 1995, 197, p 31–37CrossRef D. Raabe, Simulation of Rolling Textures of bcc Metals Considering Grain Interactions and Crystallographic Slip on {110}, {112} and {123} Planes, Mater. Sci. Eng. A, 1995, 197, p 31–37CrossRef
55.
Zurück zum Zitat L.S. Tóth, A. Molinari, and D. Raabe, Modeling of Rolling Texture Development in a Ferritic Chromium Steel, Metall. Mater. Trans. A, 1997, 28, p 2343–2351CrossRef L.S. Tóth, A. Molinari, and D. Raabe, Modeling of Rolling Texture Development in a Ferritic Chromium Steel, Metall. Mater. Trans. A, 1997, 28, p 2343–2351CrossRef
56.
Zurück zum Zitat R.A. Lebensohn and C.N. Tomé, A Self-Consistent Anisotropic Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals: Application to Zirconium Alloys, Acta Metall. Mater., 1993, 41, p 2611–2624CrossRef R.A. Lebensohn and C.N. Tomé, A Self-Consistent Anisotropic Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals: Application to Zirconium Alloys, Acta Metall. Mater., 1993, 41, p 2611–2624CrossRef
57.
Zurück zum Zitat R.A. Lebensohn and C.N. Tomé, A Study of the Stress State Associated with Twin Nucleation and Propagation in Anisotropic Materials, Philos. Mag. A, 1993, 67, p 187–206CrossRef R.A. Lebensohn and C.N. Tomé, A Study of the Stress State Associated with Twin Nucleation and Propagation in Anisotropic Materials, Philos. Mag. A, 1993, 67, p 187–206CrossRef
58.
Zurück zum Zitat P. Bate, Modelling Deformation Microstructure with the Crystal Plasticity Finite-Element Method, Philos. Trans. R. Soc. Lond. A, 1999, 357, p 1589–1601CrossRef P. Bate, Modelling Deformation Microstructure with the Crystal Plasticity Finite-Element Method, Philos. Trans. R. Soc. Lond. A, 1999, 357, p 1589–1601CrossRef
59.
Zurück zum Zitat L. Anand and M. Kothari, A Computational Procedure for Rate-Independent Crystal Plasticity, J. Mech. Phys. Sol., 1996, 44, p 525–558CrossRef L. Anand and M. Kothari, A Computational Procedure for Rate-Independent Crystal Plasticity, J. Mech. Phys. Sol., 1996, 44, p 525–558CrossRef
60.
Zurück zum Zitat D. Raabe, Z. Zhao, S.J. Park, and F. Roters, Theory of Orientation Gradients in Plastically Strained Crystals, Acta Mater., 2002, 50, p 421–440CrossRef D. Raabe, Z. Zhao, S.J. Park, and F. Roters, Theory of Orientation Gradients in Plastically Strained Crystals, Acta Mater., 2002, 50, p 421–440CrossRef
61.
Zurück zum Zitat M. Winning and D. Raabe, Fast, Physically-Based Algorithms for On-line Calculations of Texture and Anisotropy During Fabrication of Steel Sheets, Adv. Eng. Mater., 2010, 12, p 1206–1211CrossRef M. Winning and D. Raabe, Fast, Physically-Based Algorithms for On-line Calculations of Texture and Anisotropy During Fabrication of Steel Sheets, Adv. Eng. Mater., 2010, 12, p 1206–1211CrossRef
62.
Zurück zum Zitat S.H. Lalam, H.K.D.H. Bhadeshia, and D.J.C. MacKay, Estimation of Mechanical Properties of Ferritic Steel Welds. Part 1: Yield and Tensile Strength, Sci. Technol. Weld. Join., 2000, 5, p 135–147CrossRef S.H. Lalam, H.K.D.H. Bhadeshia, and D.J.C. MacKay, Estimation of Mechanical Properties of Ferritic Steel Welds. Part 1: Yield and Tensile Strength, Sci. Technol. Weld. Join., 2000, 5, p 135–147CrossRef
63.
Zurück zum Zitat C. Capdevila, C. Garcia-Mateo, F.G. Caballero, and C. Garcia de Andres, Neural Network Analysis of the Influence of Processing on Strength and Ductility of Automotive Low Carbon Sheet Steels, Comput. Mater. Sci., 2006, 38, p 192–201CrossRef C. Capdevila, C. Garcia-Mateo, F.G. Caballero, and C. Garcia de Andres, Neural Network Analysis of the Influence of Processing on Strength and Ductility of Automotive Low Carbon Sheet Steels, Comput. Mater. Sci., 2006, 38, p 192–201CrossRef
64.
Zurück zum Zitat D.J.C. MacKay, The Evidence Framework Applied to Classification Networks, Neural Comput., 1992, 4, p 698–714 D.J.C. MacKay, The Evidence Framework Applied to Classification Networks, Neural Comput., 1992, 4, p 698–714
65.
Zurück zum Zitat H.K.D.H. Bhadeshia, Neural Network in Materials Science, ISIJ Int., 1999, 39, p 966–979CrossRef H.K.D.H. Bhadeshia, Neural Network in Materials Science, ISIJ Int., 1999, 39, p 966–979CrossRef
66.
Zurück zum Zitat S. Yoshitake, V. Narayan, H. Harada, H.K.D.H. Bhadeshia, and D.J.C. MacKay, Estimation of the γ and γ′ Lattice Parameters in Nickel-Base Super Alloys Using Neural Network Analysis, ISIJ Int., 1998, 38, p 495–502CrossRef S. Yoshitake, V. Narayan, H. Harada, H.K.D.H. Bhadeshia, and D.J.C. MacKay, Estimation of the γ and γ′ Lattice Parameters in Nickel-Base Super Alloys Using Neural Network Analysis, ISIJ Int., 1998, 38, p 495–502CrossRef
67.
Zurück zum Zitat M.A. Yescas and H.K.D.H. Bhadeshia, Estimation of the Amount of Retained Austenite in Austempered Ductile Irons Using Neural Networks, Mater. Sci. Eng. A, 2001, 311, p 162–173CrossRef M.A. Yescas and H.K.D.H. Bhadeshia, Estimation of the Amount of Retained Austenite in Austempered Ductile Irons Using Neural Networks, Mater. Sci. Eng. A, 2001, 311, p 162–173CrossRef
68.
Zurück zum Zitat T. Sourmail and C. Garcia-Mateo, A Model for Predicting the Ms Temperatures of Steels, Comput. Mater. Sci., 2005, 34, p 213–218CrossRef T. Sourmail and C. Garcia-Mateo, A Model for Predicting the Ms Temperatures of Steels, Comput. Mater. Sci., 2005, 34, p 213–218CrossRef
69.
Zurück zum Zitat H.K.D.H. Bhadeshia, R.C. Dimitriu, S. Forsik, J.H. Pak, and J.H. Ryu, Performance of Neural Networks in Materials Science, Mater. Sci. Technol., 2009, 25, p 504–510CrossRef H.K.D.H. Bhadeshia, R.C. Dimitriu, S. Forsik, J.H. Pak, and J.H. Ryu, Performance of Neural Networks in Materials Science, Mater. Sci. Technol., 2009, 25, p 504–510CrossRef
70.
Zurück zum Zitat H. Fujii, D.J.C. MacKay, and H.K.D.H. Bhadeshia, Bayesian Neural Network Analysis of Fatigue Crack Growth Rate in Nickel Base Super Alloys, ISIJ Int., 1996, 36, p 1373–1382CrossRef H. Fujii, D.J.C. MacKay, and H.K.D.H. Bhadeshia, Bayesian Neural Network Analysis of Fatigue Crack Growth Rate in Nickel Base Super Alloys, ISIJ Int., 1996, 36, p 1373–1382CrossRef
71.
Zurück zum Zitat D.J.C. MacKay, Mathematical Modelling of Weld Phenomena 3, H. Cerjak and H.K.D.H. Bhadeshia, Ed., The Institute of Materials, 359, London, 1997 D.J.C. MacKay, Mathematical Modelling of Weld Phenomena 3, H. Cerjak and H.K.D.H. Bhadeshia, Ed., The Institute of Materials, 359, London, 1997
72.
Zurück zum Zitat M. Hölscher, D. Raabe, and K. Lücke, Rolling and Recrystallization Textures of bcc Steels, Mater. Tech., 1991, 62, p 567–575 M. Hölscher, D. Raabe, and K. Lücke, Rolling and Recrystallization Textures of bcc Steels, Mater. Tech., 1991, 62, p 567–575
73.
Zurück zum Zitat D. Raabe, F. Reher, M. Holscher, and K. Lücke, Textures of Strip Cast Fe16%Cr, Scr. Metall. Mater., 1993, 29, p 113–116CrossRef D. Raabe, F. Reher, M. Holscher, and K. Lücke, Textures of Strip Cast Fe16%Cr, Scr. Metall. Mater., 1993, 29, p 113–116CrossRef
74.
Zurück zum Zitat H.J. Bunge, Texture Analysis in Materials Science, Butterworths, London, England, 1982 H.J. Bunge, Texture Analysis in Materials Science, Butterworths, London, England, 1982
75.
Zurück zum Zitat D. Raabe, C. Klinkenberg, and K. Lücke, Texture Development During Intercritical Annealing of Low carbon Steel, Steel Res., 1993, 64, p 262–266CrossRef D. Raabe, C. Klinkenberg, and K. Lücke, Texture Development During Intercritical Annealing of Low carbon Steel, Steel Res., 1993, 64, p 262–266CrossRef
76.
Zurück zum Zitat H.K.D.H. Bhadeshia, Review: Neural Networks and Information in Materials Science, Stat. Anal. Data Min., 2009, 1, p 296–305CrossRef H.K.D.H. Bhadeshia, Review: Neural Networks and Information in Materials Science, Stat. Anal. Data Min., 2009, 1, p 296–305CrossRef
77.
Zurück zum Zitat D.J.C. MacKay, A Practical Bayesian Framework for Back Propagation Networks, Neural Comput., 1992, 4, p 448–472CrossRef D.J.C. MacKay, A Practical Bayesian Framework for Back Propagation Networks, Neural Comput., 1992, 4, p 448–472CrossRef
78.
Zurück zum Zitat D.J.C. MacKay, Bayesian Interpolation, Neural Comput., 1992, 4, p 415–447CrossRef D.J.C. MacKay, Bayesian Interpolation, Neural Comput., 1992, 4, p 415–447CrossRef
79.
Zurück zum Zitat D.J.C. MacKay, Bayesian Nonlinear Modelling for the Prediction Competition, ASHRAE Trans., 1994, 00, p 1053–1062 D.J.C. MacKay, Bayesian Nonlinear Modelling for the Prediction Competition, ASHRAE Trans., 1994, 00, p 1053–1062
80.
Zurück zum Zitat D.J.C. MacKay, Probable Networks and Plausible Predictions: A Review of Practical Bayesian Methods for Supervised Neural Networks, Netw. Compt. Neural Syst., 1995, 6, p 469–505CrossRef D.J.C. MacKay, Probable Networks and Plausible Predictions: A Review of Practical Bayesian Methods for Supervised Neural Networks, Netw. Compt. Neural Syst., 1995, 6, p 469–505CrossRef
81.
Zurück zum Zitat S.B. Singh, H.K.D.H. Bhadeshia, D.J.C. MacKay, H. Carey, and I. Martin, Neural Network Analysis of Steel Plate Processing, Ironmak. Steelmak., 1998, 25, p 355–365 S.B. Singh, H.K.D.H. Bhadeshia, D.J.C. MacKay, H. Carey, and I. Martin, Neural Network Analysis of Steel Plate Processing, Ironmak. Steelmak., 1998, 25, p 355–365
82.
Zurück zum Zitat A. Das, P.C. Chakraborti, S. Tarafder, and H.K.D.H. Bhadeshia, Analysis of Deformation Induced Martensitic Transformation in Stainless Steels, Mater. Sci. Technol., 2011, 27, p 366–370CrossRef A. Das, P.C. Chakraborti, S. Tarafder, and H.K.D.H. Bhadeshia, Analysis of Deformation Induced Martensitic Transformation in Stainless Steels, Mater. Sci. Technol., 2011, 27, p 366–370CrossRef
83.
Zurück zum Zitat A. Das, S. Tarafder, and P.C. Chakraborti, Estimation of Deformation Induced Martensite in Austenitic Stainless Steels, Mater. Sci. Eng. A, 2011, 529, p 9–20CrossRef A. Das, S. Tarafder, and P.C. Chakraborti, Estimation of Deformation Induced Martensite in Austenitic Stainless Steels, Mater. Sci. Eng. A, 2011, 529, p 9–20CrossRef
84.
Zurück zum Zitat A. Das, S. Sivaprasad, M. Tarafder, S.K. Das, and S. Tarafder, Estimation of Damage in High Strength Steels, Appl. Soft Compt., 2013, 13, p 1033–1041CrossRef A. Das, S. Sivaprasad, M. Tarafder, S.K. Das, and S. Tarafder, Estimation of Damage in High Strength Steels, Appl. Soft Compt., 2013, 13, p 1033–1041CrossRef
85.
Zurück zum Zitat A. Das, S.K. Das, S. Sivaprasad, M. Tarafder, and S. Tarafder, Analysis of Damage Accumulations in High Strength Low Alloy Steels Under Monotonic Deformation, Proc. Eng., 2013, 55, p 786–792CrossRef A. Das, S.K. Das, S. Sivaprasad, M. Tarafder, and S. Tarafder, Analysis of Damage Accumulations in High Strength Low Alloy Steels Under Monotonic Deformation, Proc. Eng., 2013, 55, p 786–792CrossRef
86.
Zurück zum Zitat A. Das, T. Chowdhury, and S. Tarafder, Ductile Fracture Micro-Mechanisms of High Strength Low Alloy Steels, Mater. Des., 2014, 54, p 1002–1009CrossRef A. Das, T. Chowdhury, and S. Tarafder, Ductile Fracture Micro-Mechanisms of High Strength Low Alloy Steels, Mater. Des., 2014, 54, p 1002–1009CrossRef
87.
Zurück zum Zitat H.K.D.H. Bhadeshia, D.J.C. MacKay, and L.E. Svensson, Impact toughness of C-Mn Steel Arc Welds-Bayesian Neural Network Analysis, Mater. Sci. Technol., 1995, 11, p 1046–1051CrossRef H.K.D.H. Bhadeshia, D.J.C. MacKay, and L.E. Svensson, Impact toughness of C-Mn Steel Arc Welds-Bayesian Neural Network Analysis, Mater. Sci. Technol., 1995, 11, p 1046–1051CrossRef
88.
Zurück zum Zitat R.M. Neal, Bayesian Learning for Neural Networks, Springer, Berlin, 1996CrossRef R.M. Neal, Bayesian Learning for Neural Networks, Springer, Berlin, 1996CrossRef
89.
Zurück zum Zitat M.Y. Huh, J.H. Lee, S.H. Park, O. Engler, and D. Raabe, Effect of Through-Thickness Macro and Micro-Texture Gradients on Ridging of 17%Cr Ferritic Stainless Steel Sheet, Steel Res. Int., 2005, 76, p 797–806CrossRef M.Y. Huh, J.H. Lee, S.H. Park, O. Engler, and D. Raabe, Effect of Through-Thickness Macro and Micro-Texture Gradients on Ridging of 17%Cr Ferritic Stainless Steel Sheet, Steel Res. Int., 2005, 76, p 797–806CrossRef
90.
Zurück zum Zitat D. Raabe, Overview on Basic Types of Hot Rolling Textures of Steels, Steel Res. Int., 2003, 74, p 327–337CrossRef D. Raabe, Overview on Basic Types of Hot Rolling Textures of Steels, Steel Res. Int., 2003, 74, p 327–337CrossRef
Metadaten
Titel
Calculation of Crystallographic Texture of BCC Steels During Cold Rolling
verfasst von
Arpan Das
Publikationsdatum
04.05.2017
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2017
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2695-6

Weitere Artikel der Ausgabe 6/2017

Journal of Materials Engineering and Performance 6/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.