Skip to main content
Erschienen in:

01.10.2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Calorimetric Studies of Phase Transformations in Fe–Ni Alloys

verfasst von: L. A. Stashkova, N. V. Mushnikov, V. S. Gaviko, A. V. Protasov

Erschienen in: Physics of Metals and Metallography | Ausgabe 10/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Differential scanning calorimetry (DSC) has been used to study the martensitic transformation in Fe100 – xNix alloys containing 3 to 25 at % Ni. The temperature dependence of the DCS signal exhibits δ-like peaks related to the α–γ transformation; for the alloys with x ≤ 10, an additional λ-like anomaly related to the magnetic phase transformation has been observed. The concentration dependence of the martensitic transformation temperature has been plotted, heat effects have been determined, and the activation energy of the transition has been calculated. It is shown that at Ni concentration of more than 15 at % concentration separation of the alloys occurs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L. Y. Tian, O. Eriksson, and L. Vitos, “Pressure effect on the order–disorder transformation in L10 FeNi,” Sci. Rep. 10, 1–7 (2020).CrossRef L. Y. Tian, O. Eriksson, and L. Vitos, “Pressure effect on the order–disorder transformation in L10 FeNi,” Sci. Rep. 10, 1–7 (2020).CrossRef
2.
Zurück zum Zitat J. Chen, P. Li, and E. E. Lin, “A molecular dynamics study on the mechanical properties of Fe–Ni alloy nanowires and their temperature dependence,” RSC Adv. 10, 40084–40091 (2020).CrossRef J. Chen, P. Li, and E. E. Lin, “A molecular dynamics study on the mechanical properties of Fe–Ni alloy nanowires and their temperature dependence,” RSC Adv. 10, 40084–40091 (2020).CrossRef
3.
Zurück zum Zitat N. Srakaew, P. Jantaratana, P. Nipakul, and C. Sirisathitkul, “Structural and magnetic properties of FexNi100 – x alloys synthesized using Al as a reducing metal,” J. Magn. Magn. Mater. 435, 201–205 (2017).CrossRef N. Srakaew, P. Jantaratana, P. Nipakul, and C. Sirisathitkul, “Structural and magnetic properties of FexNi100 – x alloys synthesized using Al as a reducing metal,” J. Magn. Magn. Mater. 435, 201–205 (2017).CrossRef
4.
Zurück zum Zitat D. Fukui, N. Nakada, and S. Onaka, “Internal residual stress originated from Bain strain and its effect on hardness in Fe–Ni martensite,” Acta Mater. 196, 660–668 (2020).CrossRef D. Fukui, N. Nakada, and S. Onaka, “Internal residual stress originated from Bain strain and its effect on hardness in Fe–Ni martensite,” Acta Mater. 196, 660–668 (2020).CrossRef
5.
Zurück zum Zitat A. I. Poteryaev, N. A. Skorikov, V. I. Anisimov, and M. A. Korotin, “Magnetic properties of Fe1 – xNix alloy from CPA + DMFT perspectives,” Phys. Rev. B 93, 1–7 (2016).CrossRef A. I. Poteryaev, N. A. Skorikov, V. I. Anisimov, and M. A. Korotin, “Magnetic properties of Fe1 – xNix alloy from CPA + DMFT perspectives,” Phys. Rev. B 93, 1–7 (2016).CrossRef
6.
Zurück zum Zitat L. Y. Tian, O. Gutfleisch, O. Eriksson, and L. Vitos, “Alloying effect on the order–disorder transformation in tetragonal FeNi,” Sci. Rep. 11, 1–9 (2021). L. Y. Tian, O. Gutfleisch, O. Eriksson, and L. Vitos, “Alloying effect on the order–disorder transformation in tetragonal FeNi,” Sci. Rep. 11, 1–9 (2021).
7.
Zurück zum Zitat V. V. Sagaradze, N. V. Kataeva, V. A. Zavalishin, V. A. Shabashov, K. A. Kozlov, and M. F. Klyukina, “Conditions for the violation of concentrational homogeneity of Fe–Ni Invar alloys,” Phys. Met. Metallogr. 122 (10), 969–975 (2021).CrossRef V. V. Sagaradze, N. V. Kataeva, V. A. Zavalishin, V. A. Shabashov, K. A. Kozlov, and M. F. Klyukina, “Conditions for the violation of concentrational homogeneity of Fe–Ni Invar alloys,” Phys. Met. Metallogr. 122 (10), 969–975 (2021).CrossRef
8.
Zurück zum Zitat M. P. Kashchenko, N. M. Kashchenko, and V. G. Chashchina, “Dynamic theory of the effect of a strong magnetic field on the martensitic transformation in steels with austenite grain sizes close to a critical value,” Phys. Met. Metallogr. 122 (1), 47–53 (2021).CrossRef M. P. Kashchenko, N. M. Kashchenko, and V. G. Chashchina, “Dynamic theory of the effect of a strong magnetic field on the martensitic transformation in steels with austenite grain sizes close to a critical value,” Phys. Met. Metallogr. 122 (1), 47–53 (2021).CrossRef
9.
Zurück zum Zitat I. V. Zolotarevskii, M. O. Shchetinina, and A. I. Zolotarevskii, “Martensitic transformation in Fe–Ni alloys with addition of chromium, manganese, and carbon in high magnetic fields,” Phys. Met. Metallogr. 122 (2), 127–133 (2021).CrossRef I. V. Zolotarevskii, M. O. Shchetinina, and A. I. Zolotarevskii, “Martensitic transformation in Fe–Ni alloys with addition of chromium, manganese, and carbon in high magnetic fields,” Phys. Met. Metallogr. 122 (2), 127–133 (2021).CrossRef
10.
Zurück zum Zitat G. Cacciamani, A. Dinsdale, M. Palumbo, and A. Pasturel, “The Fe–Ni system: Thermodynamic modelling assisted by atomistic calculations,” Intermetallics 18, 1148–1162 (2010).CrossRef G. Cacciamani, A. Dinsdale, M. Palumbo, and A. Pasturel, “The Fe–Ni system: Thermodynamic modelling assisted by atomistic calculations,” Intermetallics 18, 1148–1162 (2010).CrossRef
11.
Zurück zum Zitat Y. Wang, K. Li, F. Soisson, and C. S. Becquart, “Combining DFT and CALPHAD for the development of on-lattice interaction models: The case of Fe–Ni system,” Phys. Rev. Mater. 4, 113801-1–13 (2020). Y. Wang, K. Li, F. Soisson, and C. S. Becquart, “Combining DFT and CALPHAD for the development of on-lattice interaction models: The case of Fe–Ni system,” Phys. Rev. Mater. 4, 113801-1–13 (2020).
12.
Zurück zum Zitat I. Ohnuma, S. Shimenouchi, T. Omori, K. Ishida, and R. Kainuma, “Experimental determination and thermodynamic evaluation of low-temperature phase equilibria in the Fe–Ni binary system,” Calphad 67, 101677-1-9 (2019).CrossRef I. Ohnuma, S. Shimenouchi, T. Omori, K. Ishida, and R. Kainuma, “Experimental determination and thermodynamic evaluation of low-temperature phase equilibria in the Fe–Ni binary system,” Calphad 67, 101677-1-9 (2019).CrossRef
13.
Zurück zum Zitat H. Okamoto, “Supplemental literature review of binary phase diagrams: Au–La, Ce–Pt, Co–Pt, Cr–S, Cu–Sb, Fe–Ni, Lu–Pd, Si–Te, Ta–V, and V–Zn,” J. Phase Equilib. Diffus. 40, 743–756 (2019).CrossRef H. Okamoto, “Supplemental literature review of binary phase diagrams: Au–La, Ce–Pt, Co–Pt, Cr–S, Cu–Sb, Fe–Ni, Lu–Pd, Si–Te, Ta–V, and V–Zn,” J. Phase Equilib. Diffus. 40, 743–756 (2019).CrossRef
14.
Zurück zum Zitat M. Hansen and K. Anderko, Constitution of Binary Alloys (McGraw-Hill, 1958).CrossRef M. Hansen and K. Anderko, Constitution of Binary Alloys (McGraw-Hill, 1958).CrossRef
15.
Zurück zum Zitat A. Chamberod, J. Laugier, and J. M. Penisson, “Electron irradiation effects on iron-nickel invar alloys,” J. Magn. Magn. Mater. 10, 139–144 (1979).CrossRef A. Chamberod, J. Laugier, and J. M. Penisson, “Electron irradiation effects on iron-nickel invar alloys,” J. Magn. Magn. Mater. 10, 139–144 (1979).CrossRef
16.
Zurück zum Zitat O. Kubaschewski, Iron Binary Phase Diagram (Springer, New York, 1982), pp. 73–78. O. Kubaschewski, Iron Binary Phase Diagram (Springer, New York, 1982), pp. 73–78.
17.
Zurück zum Zitat T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams, 2nd ed. (ASM International, Materials Park, 1990). T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams, 2nd ed. (ASM International, Materials Park, 1990).
18.
Zurück zum Zitat L. J. Swartzendruber, V. P. Itkin, and C. B. Alcock, “The Fe–Ni (Iron–Nickel) system,” J. Phase Equilib. 12 (3), 288–312 (1991).CrossRef L. J. Swartzendruber, V. P. Itkin, and C. B. Alcock, “The Fe–Ni (Iron–Nickel) system,” J. Phase Equilib. 12 (3), 288–312 (1991).CrossRef
19.
Zurück zum Zitat K. Honda and S. Miura, “On the determination of the heterogeneous field in the system Fe–Ni,” Sci. Rep. Tohoku Imp. Univ. 16, 745–753 (1927). K. Honda and S. Miura, “On the determination of the heterogeneous field in the system Fe–Ni,” Sci. Rep. Tohoku Imp. Univ. 16, 745–753 (1927).
20.
Zurück zum Zitat E. A. Owen and A. H. Sully, “The equilibrium diagram of iron-nickel alloys,” Philos. Mag. 27, 634–636 (1939).CrossRef E. A. Owen and A. H. Sully, “The equilibrium diagram of iron-nickel alloys,” Philos. Mag. 27, 634–636 (1939).CrossRef
21.
Zurück zum Zitat E. A. Owen and Y. H. Liu, “Further X-Ray study of the equilibrium diagram of the iron–nickel alloy,” J. Iron Steel Inst. 123, 132–136 (1949). E. A. Owen and Y. H. Liu, “Further X-Ray study of the equilibrium diagram of the iron–nickel alloy,” J. Iron Steel Inst. 123, 132–136 (1949).
22.
Zurück zum Zitat F. N. Jones and W. I. Pumphrey, “Free energy and metastable states in the iron–nickel and iron–manganese systems,” J. Iron Steel Inst. 163, 121–131 (1949). F. N. Jones and W. I. Pumphrey, “Free energy and metastable states in the iron–nickel and iron–manganese systems,” J. Iron Steel Inst. 163, 121–131 (1949).
23.
Zurück zum Zitat L. Kaufman and C. Morris, “The martensitic transformation in the iron–nickel system,” JOM 8 (10), 1393–1401 (1956).CrossRef L. Kaufman and C. Morris, “The martensitic transformation in the iron–nickel system,” JOM 8 (10), 1393–1401 (1956).CrossRef
24.
Zurück zum Zitat E. A. Wilson, “Gamma–alpha transformation in Fe, Fe–Ni and Fe–Cr alloys,” Metal Sci. 18 (10), 471–484 (1984).CrossRef E. A. Wilson, “Gamma–alpha transformation in Fe, Fe–Ni and Fe–Cr alloys,” Metal Sci. 18 (10), 471–484 (1984).CrossRef
25.
Zurück zum Zitat D. A. Mirzayev, O. P. Morozov, and M. M. Shteynberg, “The γ → α transformation in iron and its alloys,” Phys. Met. Metallogr. 6, 99–105 (1973). D. A. Mirzayev, O. P. Morozov, and M. M. Shteynberg, “The γ → α transformation in iron and its alloys,” Phys. Met. Metallogr. 6, 99–105 (1973).
26.
Zurück zum Zitat K. B. Reuter, D. B. Williams, and J. I. Goldstein, “Determination of the Fe–Ni Phase Diagram below 400°C,” Metall. Trans. A 20 (4), 719–725 (1989).CrossRef K. B. Reuter, D. B. Williams, and J. I. Goldstein, “Determination of the Fe–Ni Phase Diagram below 400°C,” Metall. Trans. A 20 (4), 719–725 (1989).CrossRef
27.
Zurück zum Zitat A. T. Dinsdale, “SGTE data for pure elements,” Calphad 15 (4), 317–425 (1991).CrossRef A. T. Dinsdale, “SGTE data for pure elements,” Calphad 15 (4), 317–425 (1991).CrossRef
28.
Zurück zum Zitat G. Ghosh and G. B. Olson, “Computational thermodynamics and the kinetics of martensitic transformation,” J. Phase Equilib. 22 (3), 199–207 (2001).CrossRef G. Ghosh and G. B. Olson, “Computational thermodynamics and the kinetics of martensitic transformation,” J. Phase Equilib. 22 (3), 199–207 (2001).CrossRef
29.
Zurück zum Zitat E. Scheil and W. Normann, “Investigation of the thermodynamics of the α–γ transformation in iron–nickel alloy,” Arch. Eisenhuttenwes 30 (12), 751–754 (1959). E. Scheil and W. Normann, “Investigation of the thermodynamics of the α–γ transformation in iron–nickel alloy,” Arch. Eisenhuttenwes 30 (12), 751–754 (1959).
30.
Zurück zum Zitat L. V. Spivak and N. E. Shchepina, “Calorimetric effects in the structural and phase transitions of metals and alloys,” Phys. Met. Metallogr. 121 (10), 968–995 (2020).CrossRef L. V. Spivak and N. E. Shchepina, “Calorimetric effects in the structural and phase transitions of metals and alloys,” Phys. Met. Metallogr. 121 (10), 968–995 (2020).CrossRef
31.
Zurück zum Zitat N. V. Mushnikov, A. G. Popov, V. S. Gaviko, Protasov, N. M. Kleinerman, O. A. Golovnya, and S. P. Naumov, “Peculiarities of phase diagram of Fe–Ni system at Ni concentrations 0–20 at %,” Acta Mater. 240, 118330 (2022).CrossRef N. V. Mushnikov, A. G. Popov, V. S. Gaviko, Protasov, N. M. Kleinerman, O. A. Golovnya, and S. P. Naumov, “Peculiarities of phase diagram of Fe–Ni system at Ni concentrations 0–20 at %,” Acta Mater. 240, 118330 (2022).CrossRef
32.
Zurück zum Zitat K. H. Illers, “Die ermittlung des schmelzpunktes von kristallinen polymeren mittels wärmeflusskalorimetrie (DSC),” Eur. Polym. J. 10, 911–916 (1974).CrossRef K. H. Illers, “Die ermittlung des schmelzpunktes von kristallinen polymeren mittels wärmeflusskalorimetrie (DSC),” Eur. Polym. J. 10, 911–916 (1974).CrossRef
33.
Zurück zum Zitat L. V. Spivak and N. E. Shchepina, “Polymorphic transformations in iron and zirconium,” Tech. Phys. 65 (7), 1100–1105 (2020).CrossRef L. V. Spivak and N. E. Shchepina, “Polymorphic transformations in iron and zirconium,” Tech. Phys. 65 (7), 1100–1105 (2020).CrossRef
34.
Zurück zum Zitat H. E. Kissinger, “Reaction kinetics in differential thermal analysis,” Anal. Chem. 29 (11), 1702–1706 (1957).CrossRef H. E. Kissinger, “Reaction kinetics in differential thermal analysis,” Anal. Chem. 29 (11), 1702–1706 (1957).CrossRef
Metadaten
Titel
Calorimetric Studies of Phase Transformations in Fe–Ni Alloys
verfasst von
L. A. Stashkova
N. V. Mushnikov
V. S. Gaviko
A. V. Protasov
Publikationsdatum
01.10.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 10/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22600907

Weitere Artikel der Ausgabe 10/2022

Physics of Metals and Metallography 10/2022 Zur Ausgabe

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

X-ray Analysis of Short-Range Order in Iron–Gallium Solid Solutions